course aims in Estonian
Aine eesmärk on arendada andmeanalüüsi oskusi, rakendades ärianalüütika meetodeid äri- ja finantsprobleemide lahendamiseks.
course aims in English
the aim of this course is to develop skills in data analytics and use techniques and methods from data mining and statistics to solve business and financial problems.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- valib ja rakendab sobivaid andmekaeve- ja statistilisi meetodeid ärianalüütikat puudutavate probleemide lahendamiseks;
- kasutab programmeerimiskeeli ja nendega seotud töövahendeid äriandmete analüütika probleemide lahendamiseks;
- defineerib praktikas ärianalüütika probleeme, lahendab neid sobivat metoodikat ja tehnikat kasutades ja tõlgendab ning kommunikeerib tulemusi.
learning outcomes in the course in Eng.
After completing this course, the student:
- chooses and applies appropriate methods from data mining and statistics to solve problems related to business data analytics;
- uses programming languages and associated tools to solve problems related to business data analytics;
- defines practical business analytics problems and solves them by using appropriate methods and techniques and interprets and communicates the results.
brief description of the course in Estonian
Ärianalüütika kontseptsioon, tehnikate ülevaade ja võrdlus ning analüüsi protsess. R ja töövahendite kasutamine äriandmete analüüsiks. Kirjeldav statistika ja andmete puhastamine. SQL-i kasutamine andmebaasisüsteemidest andmete pärimiseks. Andmete korje ning veebist kraapimine. Regressioonanalüüsi (sh lineaarne, logistiline) rakendamine ärianalüütikas seoste leidmiseks ning prognoosivahendina (sh aegread). Otsustuspuud ning nende rakendamine andmepõhistes juhtimisotsustes. Tehisnärvivõrgud ning nende rakendamine finantsvaldkonnas. Meetodite kombineerimine ning tulemuste tõlgendamine.
brief description of the course in English
Business analytics, its concept, overview of the techniques and analysis process. Using R and its tools in analyzing business data. Descriptive statistics and cleaning data. Using SQL for querying data from database systems. Data collection and web scraping. Using regression analysis (incl. linear and logistic) to find relations in business data and for predictive analytics (incl. time-series). Decision trees and its application in data driven management decisions. Neural networks and its application in finance. Combining methods and interpreting results.
type of assessment in Estonian
Jooksvad kodutööd 20%, grupitöö projekt 40%, eksam 40%
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Torgo, L., Bruce, P.C., Shmueli, G., Yahav, I., Patel, N.R., Lichtendahl, K.C., (2017), Data Mining for Business Analytics: Concepts, Techniques, and Applications in R.
Ledolter, J., (2013), Data Mining and Business Analytics with R.
Linoff, G.S., (2011), Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management.
study forms and load
daytime study: weekly hours
3.0
session-based study work load (in a semester):
lecturer in charge
Tõnn Talpsepp, kaasprofessor (ME - majandusanalüüsi ja rahanduse instituut)