Applied Statistics
BASIC DATA
course listing
A - main register
course code
RAM0510
course title in Estonian
Rakendusstatistika
course title in English
Applied Statistics
course volume CP
2.00
ECTS credits
3.00
to be declared
yes
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
The course is a prerequisite
Data Processing and Visualization (EVR0310)
Study programmes that contain the course
code of the study programme version
course compulsory
EDKR16/25
no
Structural units teaching the course
EV - Virumaa College
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Anda teoreetilised teadmised ja praktilised oskused statistiliste andmete töötlemiseks ning lihtsama andmeanalüüsi läbiviimiseks.
course aims in English
To provide knowledge and skills of handling data and analysing the results by using the methods of mathematical statistics.
learning outcomes in the course in Est.
Üliõpilane tunneb tõenäosuseteooria ja matemaatilise statistika põhimõisteid ja omadusi, mõistab juhusliku suuruse jaotuse olemust ning tunneb enamlevinud statistilisi jaotusi ja nende omadusi. Teab kirjeldava statistika põhimeetodeid ja andmeanalüüsi lihtsamaid meetodeid, oskab statistilisi andmeid töödelda, analüüsida ja saadud tulemustest järeldusi teha andmeanalüüsi meetodite abil.
learning outcomes in the course in Eng.
The student knows basic concepts and properties related with probability theory and mathematical statistics, understands the concept of random variable distribution and knows most frequent statistical distributions and their properties. Knows the main methods of descriptive statistics and the basic methods of data analysis, is able to process statistical data, analyse and draw conclusions from the received results with the help of data analysis methods.
brief description of the course in Estonian
Tõenäosusteooria ja matemaatilise statistika põhimõisted ja -seosed. Juhuslikud suurused. Jaotusseadus. Arvkarakteristikud. Enamlevinud jaotused: binoomjaotus, ühtlane jaotus, eksponentjaotus, normaaljaotus. Kahe juhusliku suuruse sõltuvus. Korrelatsioon. Väljavõttelised jaotused ja arvkarakteristikud. Histogramm. Parameetrite hindamine. Usaldusvahemikud. Statistiliste hüpoteeside kontroll. Testid keskväärtusele ja dispersioonile. Lineaarne ühemõõtmeline regressioonanalüüs. Korrelatsiooni hindamine. Dispersioonanalüüs. Statistika tarkvara (MS Excel). Statistilise andmeanalüüsi tulemuste vormistamine.
brief description of the course in English
Basic concepts and connections in probability theory and mathematical statistics. Random variables. Distribution law. Characteristics of a number. Most common distributions: binominal distribution, uniform distribution, exponential distribution, normal distribution. Dependence between two variables. Correlation. Extracted distributions and characteristics of a number. Histogram. Parametric assessment. Confidence intervals. Statistic hypothesis checking. Hypothesis testing for a mean and dispersion test. Simple linear regression analysis. Correlation assessment. Dispersion analysis. Statistical software (MS Excel). Formatting the results of a statistical data analysis.
type of assessment in Estonian
vt fail
type of assessment in English
see attachment
independent study in Estonian
Iseseisev töö: orienteeruvalt 1/3 - aine teoreetilise osa läbitöötamine; 2/3 - harjutusülesannete lahendamine. Semestri jooksul tuleb sooritada kontrolltööd ja kodutööd. Kodu- ja kontrolltööde arvu ja eksami läbiviimise vormi määrab õppejõud semestri alguses.
independent study in English
About 1/3 of the independent work is meant for working through the subject’s theoretical part, and 2/3 – for completing practical exercises. The students have to submit tests and home tasks during the semester. The number of tests and home tasks as well as the format of the exam is determined by the course instructor at the beginning of the semester.
study literature
Montgomery D. C., G. C. Runger. Applied Statistics and Probability for Engineers (4th edn). Wiley, 2006.
study forms and load
daytime study: weekly hours
2.0
session-based study work load (in a semester):
lectures
1.0
lectures
0.0
practices
0.0
practices
0.0
exercises
1.0
exercises
8.0
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2024/2025 spring
Maarika Virkunen, EV - Virumaa College
Estonian
    RAM0510_HK_ENG.pdf 
    display more
    2023/2024 spring
    Olga Dunajeva, EV - Virumaa College
    Estonian
      2022/2023 spring
      Olga Dunajeva, EV - Virumaa College
      Estonian
        2021/2022 spring
        Natalja Maksimova, EV - Virumaa College
        Estonian
          RAM0510_HK_ENG.pdf 
          2020/2021 spring
          Natalja Maksimova, EV - Virumaa College
          Estonian
            RAM0510_HK_ENG.pdf 
            Course description in Estonian
            Course description in English