Foundations of Artificial Intelligence and Machine Learning
BASIC DATA
course listing
A - main register
course code
ITI0210
course title in Estonian
Tehisintellekti ja masinõppe alused
course title in English
Foundations of Artificial Intelligence and Machine Learning
course volume CP
4.00
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Algorithms and Data Structures (ITI0204)
Study programmes that contain the course
code of the study programme version
course compulsory
IABB17/25
no
IABM02/25
no
IAFM21/24
no
IAPM02/25
no
IAVM23/25
no
display more
Structural units teaching the course
IT - Department of Software Science
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Üliõpilane mõistab elementaarsete tehisintellekti meetodite kasutamise konteksti ja motivatsioone. Suudab lihtsamaid meetodeid rakendada ja vastavalt situatsioonile kohaldada. Omab teoreetilist baasi tehisintellekti teemade, s.h. loogika, masinõpe, robootika jne edasise õppimise hõlbustamiseks.
course aims in English
The student understands the context and motivation of using basic techniques of artificial intelligence. Can apply simpler approaches and adapt them according to the situation. Has theoretical knowledge to support further study in logic, machine learning, robotics etc.
learning outcomes in the course in Est.
Aine läbinud tudeng:
1. Oskab kirjeldada ja põhjendada erinevate otsingualgoritmide (puu-, graafi-, lokaalne- ja heuristiline otsing) käitumist ja parameetreid.
2. Oskab formuleerida otsinguülesandeid (olekud, üleminekud, lõpetamise tingimused, väärtusfunktsioonid jne).
3. Oskab teadmust lausearvutusloogikas või predikaatloogikas kirjeldada ning loogikasolveriga järeldusi teha.
4. Tunneb Bayesi tõenäosuse teoreetilisi aluseid ja kasutab selle lihtsamaid rakendusi (s.h “Naiivne” Bayes) ülesannete lahendamiseks.
5. Oskab rakendada masinõppe elementaarseid tehnikaid – andmete eeltöötlus, klassifitseerimine masinõppega.
learning outcomes in the course in Eng.
Upon completion a student:
1. Can describe and explain the behaviour and parameters of various search algorithms (tree, graph, local and heuristic search).
2. Can formulate search problems (states, transitions, stop conditions, value functions etc).
3. Can represent knowledge in propositional or predicate logic and infer new knowledge with a logic solver.
4. Knows the theoretical basis of Bayesian probability and can use its simpler applications (incl. “Naive” Bayes) to solve problems.
5. Can apply basic techniques of machine learning – data preparation, classification.
brief description of the course in Estonian
Sissejuhatus tehisintellekti valdkonnas kasutusel olevatesse põhimõtetesse ja algoritmidesse. Ülesannete lahendamine otsinguga. Heuristikad. Loogilise ja tõenäosusliku järeldamise alused. Bayesi tõenäosus. Masinõppe alused: järelvalvega õpe. Närvivõrgud. Stiimulõpe.

Aine eeldab programmeerimise oskust. Õppetöös kasutatakse peamiselt keelt Python.
brief description of the course in English
Introduction to the principles and algorithms used in the field of artificial intelligence. Solving problems by searching. Heuristics. Fundamentals of logical and probabilistic reasoning. Bayesian probability. Machine learning basics: supervised learning. Neural networks. Reinforcement learning.

The course requires familiarity with programming. The language used in teaching is mostly Python.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Russell, S.J and Norvig, P. Artificial intelligence: a modern approach, third edition, Prentice Hall. 2009.Poole, D.L and Mackworth, A. K. Artificial Intelligence: Foundations of Computational Agents, 2nd Edition. Cambridge University Press, 2017. https://artint.info/2e/html/ArtInt2e.html

Link aine kodulehele: https://courses.cs.taltech.ee/pages/ITI0210
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
2.0
practices
-
exercises
0.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Gert Kanter, IT - Department of Software Science
Estonian
    display more
    2024/2025 spring
    Priit Järv, IT - Department of Software Science
    Estonian
      ITI0210_2025_ik.pdf 
      2024/2025 autumn
      Priit Järv, IT - Department of Software Science
      Estonian
        ITI0210_2024_s_ik.pdf 
        2023/2024 spring
        Priit Järv, IT - Department of Software Science
        Estonian
          ITI0210_2024_ik.pdf 
          2023/2024 autumn
          Priit Järv, IT - Department of Software Science
          Estonian
            ITI0210_2023_s_ik.pdf 
            2022/2023 spring
            Priit Järv, IT - Department of Software Science
            Estonian
              ITI0210_2023_ik.pdf 
              2022/2023 autumn
              Priit Järv, IT - Department of Software Science
              English, Estonian
              https://moodle.taltech.ee/course/view.php?id=30646
                2021/2022 spring
                Priit Järv, IT - Department of Software Science
                Estonian
                  ITI0210 hindamiskriteeriumid eng.pdf 
                  2021/2022 autumn
                  Priit Järv, IT - Department of Software Science
                  English, Estonian
                    ITI0210 hindamiskriteeriumid eng.pdf 
                    2020/2021 spring
                    Priit Järv, IT - Department of Software Science
                    Estonian
                      ITI0210 hindamiskriteeriumid eng.pdf 
                      2019/2020 spring
                      Priit Järv, IT - Department of Software Science
                      Estonian
                        ITI0210 hindamiskriteeriumid eng.pdf 
                        2019/2020 autumn
                        Priit Järv, IT - Department of Software Science
                        Estonian
                          ITI0210 hindamiskriteeriumid eng.pdf 
                          2018/2019 spring
                          Priit Järv, IT - Department of Software Science
                          Estonian
                            ITI0210 hindamiskriteeriumid eng.pdf 
                            2018/2019 autumn
                            Priit Järv, IT - Department of Software Science
                            Estonian
                              ITI0210 hindamiskriteeriumid eng.pdf 
                              2017/2018 spring
                              Priit Järv, IT - Department of Software Science
                              Estonian
                                ITI0210 hindamiskriteeriumid eng.pdf 
                                Course description in Estonian
                                Course description in English