Linear Algebra
BASIC DATA
course listing
A - main register
course code
YMX0241
course title in Estonian
Lineaaralgebra
course title in English
Linear Algebra
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
EACB17/25
no
IABB17/25
yes
LARB17/25
yes
Structural units teaching the course
ET - Tartu College
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Anda teoreetilised alused lineaarsete võrrandisüsteemide, maatriksite, determinantide ja vektorruumide teooriale.
Õpetada lahendama mainitud teooriaga seotud põhilisi ülesandeid.
Näidata lineaaralgebra võimalikke rakendusi praktikas ja teistes teadusharudes.
Harjutada üliõpilasi matemaatilise mõtlemise ja sümboolikaga.
course aims in English
To give theoretical foundations for the theory of systems of linear equations, matrices, determinants and vector spaces.
To teach to solve main problems related to the theory mentioned above.
To show possible applications of linear algebra in practice and other disciplines.
Training of students in mathematical thinking and symbolism.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- oskab sooritada tehteid kompleksarvudega nii algebralisel kui ka trigonomeetrilisel kujul;
- teostab tehteid maatriksitega (lineaarsed tehted, korrutamine, transponeerimine, pöördmaatriksi ja astaku leidmine);
- lahendab lineaarseid võrrandisüsteeme, eristab neid maatrikskujul ja leiab nende pseudolahendeid;
- leiab determinandi väärtust ja sõnastab determinantide olulisemad omadused;
- sõnastab vektorruumide ja eukleidiliste ruumide teooria põhimõisteid (baas, koordinaadid, skalaarkorrutis, pikkus, kaugus), arvutab meetrilisi suurusi eukleidilistes ruumides ja lahendab tüüpülesandeid sirgete ja tasandite kohta;
- sõnastab lineaarteisendustega seotud mõisteid ning leiab lineaarteisenduse omaväärtuseid ja omavektoreid;
- oskab viia ruutvormi ortogonaalteisendusega kanoonilisele kujule;
- testib praktiliste ülesannete lahendamisel saadud tulemuste õigsust.
learning outcomes in the course in Eng.
Having finished the study of the subject, a student is able:
- to carry out operations with complex numbers presented in algebraic or polar form;
- to carry out matrix operations (linear operations, multiplication, transposition, finding of the inverse and the rank);
- to present a system of linear equations in the matrix form and to find its solutions and pseudosolutions;
- to find the value of a determinant and to know the main properties of determinants;
- to formulate the main notions of the theory of vector and Euclidean spaces (base, coordinates, scalar product, length, distance), to calculate metric values in Euclidean spaces and to solve typical problems related to straightlines and planes;
- to formulate the main notions of the theory of linear maps, to find the eigenvalues and eigenvectors of a linear map;
- to find the canonical form of a quadratic form using orthogonal transformations;
- to check the correctness of results obtained by solution of practical exercises.
brief description of the course in Estonian
Kompleksarvud ja tehted nendega nii trigonomeetrilisel kui ka geomeetrilisel kujul. Moivre'i valem. Kompleksarvude juurimine.
Vektorruumi definitsioon ja näiteid. Vektorite lineaarne sõltuvus. Vektorruumi baas. Baaside näiteid. Vektori koordinaadid ja tehted koordinaatkujul antud vektoritega.
Maatriksid ja tehted maatriksitega. Tehete omadused.
Lineaarne võrrandisüsteem, tema lahend ja maatrikskuju. Gaussi meetod. Lineaarse võrrandisüsteemi pseudolahend.
n-ndat järku determinandi definitsioon. Determinantide omadused. Maatriksi astak ja selle leidmine. Teoreem maatriksi astakust.
Pöördmaatriks, selle olemasolu tingimus ja leidmine.
Afiinse ruum ja koordinaadid afiinses ruumis. Eukleidiline ruum ja meetrilised suurused selles.
Sirge n-mõõtmelises eukleidilises ruumis ja sirge parameetrilised ning kanoonilised võrrandid. Hüpertasand ja selle erijuhud. Punkti kaugus hüpertasandist.
Teist ja kolmandat järku determinandi geomeetriline tõlgendus. Vektorkorrutis ja selle omadused.
Ülevaade teist järku joontest.
Lineaarne kujutus ja selle koordinaatkuju. Ortogonaalteisendus ja ortogonaalmaatriks. Omaväärtused ja omavektorid ning nende leidmine. Ruutvorm ja tema viimine kanoonilisele kujule.
brief description of the course in English
Complex numbers and their polar form. Operations with complex numbers. Finding roots of complex numbers.
Axioms of a vector space. Examples. Linearly dependent sets of vectors. Basis of a vector space. Examples of bases. The coordinates of a vector relative to a basis.
Matrices and matrix operations. Properties of matrix operations.
Systems of linear equations and their solutions. The Gaussian elimination method for solving of systems of linear equations. A pseudosolution of a system of linear equations.
Definition and properties of determinants. Evaluating of determinants. The rank of a matrix. The theorem on the rank of a matrix. The inverse of a matrix.
Affine spaces. Coordinates in an affine space. Euclidean spaces. Metric values in an Euclidean space.
Straight lines in n-dimensional Euclidean spaces. Hyperplanes. Distance between a point and a hyperplane.
The geometric interpretation of 2x2 and 3x3 matrices. The cross product of vectors and its properties.
A linear map and its matrix. Orthogonal transformations and orthogonal matrices. Eigenvalues, eigenvectors and finding of them. Quadratic forms and finding their canonical forms by orthogonal transformations.
type of assessment in Estonian
Teadmiste kontroll toimub eksamil. Üliõpilane peab eksamile pääsemiseks olema lahendanud kodused ülesanded ja sooritanud kaks kontrolltööd (kumbki vähemalt 51-le punktile). Kodused ülesanded annab ja kontrolltööd viib läbi harjutustunde teostav õppejõud. Eksamil kontrollitakse üliõpilase teoreetilisi teadmisi: lihtsamate faktide tõestusi, mõistete definitsioone ja vaadeldavate matemaatiliste objektide omadusi. Samuti tuleb eksamil lahendada ülesandeid. Eksamihinne kujuneb eksamiküsimuste vastustega saadud punktide alusel. Kokkuleppel õppejõuga võib ainet sooritada osade kaupa semestri jooksul.
type of assessment in English
The control of knowledges takes place in examinations at the end of a term. For the getting a permission to an examination it is necessary to solve home-works and perform two tests (getting for each of them at least 51 points). Home-works and tests are carried out by an assistant. In examinations the following knowledges are checked: proofs of elementary facts, the main notions and the main properties of considerable mathematical objects. Also is necessary to solve some problems. The lecturer has a right to examine students by parts during a term.
independent study in Estonian
Iseseisev töö seisneb teoreetiliste materjalide läbitöötamises ja kodutööde täitmises. Töö maht statsionaarses õppes - 64 tundi, kaugõppes - 85 tundi
independent study in English
The self-dependent work of students consists in the learning of the theoretical material of the subject and in the solving home-problems. Learning capacities of the subject in the stationary learning is 64 hours and in the extramural learning 85 hours.
study literature
Põhiõpik:
Puusemp, P. Lineaaralgebra. Tallinn, Avita, 2008.
Täiendav kirjandus:
Paal, E. Lineaaralgebra. Tallinn, TTÜ kirjastus, 2004.
Kangro, G. Kõrgem algebra. Tallinn, 1962.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
6.0
practices
0.0
practices
0.0
exercises
2.0
exercises
10.0
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Tiina Zingel, IC - IT College
Estonian
    YMX241 Linear Algebra.pdf 
    Jaan Varik, LT - Department of Cybernetics
    Estonian
      YMX241 Linear Algebra.pdf 
      display more
      2024/2025 spring
      Mati Väljas, LT - Department of Cybernetics
      Estonian
        YMX241 Linear Algebra.pdf 
        2024/2025 autumn
        Tiina Zingel, IC - IT College
        Estonian
          YMX241 Linear Algebra.pdf 
          Jaan Varik, LT - Department of Cybernetics
          Estonian
            YMX241 Linear Algebra.pdf 
            2023/2024 spring
            Jaan Varik, LT - Department of Cybernetics
            Estonian
              Mati Väljas, LT - Department of Cybernetics
              Estonian
                2023/2024 autumn
                Jaan Varik, LT - Department of Cybernetics
                Estonian
                  Ernst Tungel, ET - Tartu College
                  Estonian
                    2022/2023 spring
                    Mati Väljas, LT - Department of Cybernetics
                    Estonian
                      Ernst Tungel, ET - Tartu College
                      Estonian
                        2022/2023 autumn
                        Helle Hallik, ET - Tartu College
                        Estonian
                          Ernst Tungel, ET - Tartu College
                          Estonian
                            Jaan Varik, LT - Department of Cybernetics
                            Estonian
                              Mati Väljas, LT - Department of Cybernetics
                              Estonian
                                2021/2022 spring
                                Mati Väljas, LT - Department of Cybernetics
                                Estonian
                                  YMX241 Linear Algebra.pdf 
                                  2021/2022 autumn
                                  Jaan Varik, LT - Department of Cybernetics
                                  Estonian
                                    YMX241 Linear Algebra.pdf 
                                    Tiina Zingel, IC - IT College
                                    Estonian
                                      YMX241 Linear Algebra.pdf 
                                      2020/2021 spring
                                      Mati Väljas, LT - Department of Cybernetics
                                      Estonian
                                        YMX241 Linear Algebra.pdf 
                                        2020/2021 autumn
                                        Mati Väljas, LT - Department of Cybernetics
                                        Estonian
                                          YMX241 Linear Algebra.pdf 
                                          Tiina Zingel, IC - IT College
                                          Estonian
                                            YMX241 Linear Algebra.pdf 
                                            2019/2020 spring
                                            Mati Väljas, LT - Department of Cybernetics
                                            Estonian
                                              YMX241 Linear Algebra.pdf 
                                              2019/2020 autumn
                                              Tiina Zingel, IC - IT College
                                              Estonian
                                                YMX241 Linear Algebra.pdf 
                                                Jaan Varik, LT - Department of Cybernetics
                                                Estonian
                                                  YMX241 Linear Algebra.pdf 
                                                  2018/2019 spring
                                                  Tiina Zingel, IC - IT College
                                                  Estonian
                                                    YMX241 Linear Algebra.pdf 
                                                    Mati Väljas, LT - Department of Cybernetics
                                                    Estonian
                                                      YMX241 Linear Algebra.pdf 
                                                      2018/2019 autumn
                                                      Jaan Varik, LT - Department of Cybernetics
                                                      Estonian
                                                        YMX241 Linear Algebra.pdf 
                                                        Tiina Zingel, IC - IT College
                                                        Estonian
                                                          YMX241 Linear Algebra.pdf 
                                                          2017/2018 spring
                                                          Jaan Varik, LT - Department of Cybernetics
                                                          Estonian
                                                            YMX241 Linear Algebra.pdf 
                                                            Tiina Zingel, IC - IT College
                                                            Estonian
                                                              YMX241 Linear Algebra.pdf 
                                                              Course description in Estonian
                                                              Course description in English