Mathematical Analysis I
BASIC DATA
course listing
A - main register
course code
YMX0231
course title in Estonian
Matemaatiline analüüs I
course title in English
Mathematical Analysis I
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
The course is a prerequisite
Functions of One Complex Variable and Integral Transforms (YMX0340)
Study programmes that contain the course
code of the study programme version
course compulsory
IABB17/25
no
IACB17/25
yes
Structural units teaching the course
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
- Anda diferentsiaal- ja integraalarvutuse teoreetilised alused.
- Anda algteadmised diferentsiaalvõrranditest.
- Õpetada lahendama mainitud teooriaga seotud põhilisi ülesandeid.
- Õpetada kasutama matemaatikapakette (Wolfram Alpha, ...).
- Näidata diferentsiaal- ja integraalarvutuse võimalikke rakendusi praktikas ja teistes teadusharudes.
- Harjutada üliõpilasi matemaatilise mõtlemise ja sümboolikaga.
course aims in English
- To give the theoretical base of differential and integral calculus.
- To give elementary knowledge on differential equations.
- To teach to solve main problems of the theory mentioned above.
- To teach to use computer algebra systems (Wolfram Alpha, ...).
- To show the possible applications of the theory mentioned above.
- To make the students accustomed with the mathematical thinking and symbolism.
learning outcomes in the course in Est.
Aine läbinud üliõpilane peab oskama:
- leida jada ja funktsiooni piirväärtust ning uurida funktsiooni pidevust;
- leida funktsiooni tuletisi ja diferentsiaale;
- rakendada Taylori valemit;
- kasutada funktsiooni piirväärtust ja tuletisi funktsiooni uurimisel;
- leida määramata ja määratut integraali;
- ositi integreerida ja teostada muutujate vahetust määramata ja määratud integraali korral;
- kasutada rakendustes määratud integraali ja päratut integraali;
- tundma lihtsamate diferentsiaalvõrrandite põhiliike ja oskama neid lahendada;
- testida praktiliste ülesannete lahendamisel saadud tulemuste õigsust.
- kasutada matemaatikapakette (Wolfram Alpha, ...).
learning outcomes in the course in Eng.
Having finished the study of the subject a student has to be able:
- to find the limit of sequence and function, also to investigate continuity of function;
- to find derivatives and differentials;
- to apply Taylor's formula;
- to use limit and derivatives of function in investigation of function;
- to find indefinite and definite integral;
- to integrate by parts and to change variables;
- to use definite and improper integral in applications;
- to know the main types of simple differential equations and to find their solutions;
- to check the correctness of results obtained by solution of practical exercises.
- to use computer algebra systems (Wolfram Alpha, ...).
brief description of the course in Estonian
Funktsioon. Funktsiooni piirväärtus. Ekvivalentsed suurused. Arv e. Funktsiooni pidevus. Funktsiooni tuletis. Liit- ja pöördfunktsiooni diferentseerimine. Logaritmiline diferentseerimine. Ilmutamata funktsiooni diferentseerimine. Parameetriliselt esitatud funktsiooni tuletis. Kõrgemat järku tuletised. Funktsiooni diferentsiaal ja selle rakendused. Taylori valem. Ekstreemum. Joone puutuja ja normaalsirge. Määramata integraal. Põhilised integreerimisvõtted. Määratud integraal ja selle rakendused. Diferentsiaalvõrrandi mõiste. Lihtsamad esimest järku diferentsiaalvõrrandid. Erikujuliste kõrgemat järku diferentsiaalvõrrandite lahendamine. Konstantsete kordajatega lineaarsete diferentsiaalvõrrandite lahendamine. Matemaatikapaketid.
brief description of the course in English
Function. Limit of function. Equivalent quantities. Number e. Continuity of function. Derivative of function. Differentiation of composite and inverse function. Logarithmic differentiation. Differentiation of implicit function. Differentiation of parametric function. Higher-order derivatives. Differential of function and its applications. Taylor's formula. Extremum. Tangent to curve and perpendicular line. Indefinite integral. Main methods of integration. Definite integral and its applications. Simple differential equations of the first order. Some special differential equations of the higher order. Linear equations with constant coefficients. Computer algebra systems (CAS).
type of assessment in Estonian
Teadmiste kontroll toimub eksamil. Üliõpilane peab eksamile pääsemiseks olema lahendanud kodused ülesanded ja sooritanud kaks kontrolltööd (kumbki vähemalt 51-le punktile). Kodused ülesanded annab ja kontrolltööd viib läbi harjutustunde teostav õppejõud. Eksamil kontrollitakse üliõpilase teoreetilisi teadmisi: lihtsamate faktide tõestusi, mõistete definitsioone ja vaadeldavate matemaatiliste objektide omadusi. Samuti tuleb eksamil lahendada ülesandeid. Eksamihinne kujuneb eksamiküsimuste vastustega saadud punktide alusel. Kokkuleppel õppejõuga võib ainet sooritada osade kaupa semestri jooksul.
type of assessment in English
The control of knowledges takes place in examinations at the end of a term. For the getting a permission to an examination it is necessary to solve home-works and perform two tests (getting for each of them at least 51 points). Home-works and tests are carried out by an assistent. In examination the following knowledges are checked: proofs of elementary facts, the main notions and the main properties of considerable mathematical objects. Also is necessary to solve some problems. The final grade of the course will be computed as a weighted mean of the tests and the exam. The lecturer has a right to examine students by parts during a term.
independent study in Estonian
Iseseisev töö seisneb teoreetiliste materjalide läbitöötamises ja kodutööde täitmises. Töö maht statsionaarses õppes - 80 tundi, kaugõppes - 100 tundi.
independent study in English
The self-dependent work of students consists in the learning of the theoretical material of the subject and in the solving home-problems. Learning capacities of the subject in the stationary learning is 80 hours and in the distance learning 100 hours.
study literature
Põhiõpik:
Tammeraid, I. Matemaatiline analüüs I. Tallinn, TTÜ kirjastus, 2003.
Täiendav kirjandus:
Piskunov, N. Diferentsiaal- ja integraalarvutus I. Tallinn, 1981.
Trench. A. F. Introduction to real analysis, Prentice Hall, 2003.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
6.0
practices
0.0
practices
0.0
exercises
2.0
exercises
11.0
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 spring
Jüri Kurvits, LT - Department of Cybernetics
Estonian
    display more
    2025/2026 autumn
    Gert Tamberg, LT - Department of Cybernetics
    Estonian
      2024/2025 spring
      Jüri Kurvits, LT - Department of Cybernetics
      Estonian
        2024/2025 autumn
        Gert Tamberg, LT - Department of Cybernetics
        Estonian
          2023/2024 spring
          Jüri Kurvits, LT - Department of Cybernetics
          Estonian
            2023/2024 autumn
            Gert Tamberg, LT - Department of Cybernetics
            Estonian
              2022/2023 spring
              Jüri Kurvits, LT - Department of Cybernetics
              Estonian
                2022/2023 autumn
                Alar Leibak, LT - Department of Cybernetics
                Estonian
                  2021/2022 spring
                  Jüri Kurvits, LT - Department of Cybernetics
                  Estonian
                    YMX0231Matemaatiline_analuus_I_ENG.pdf 
                    2021/2022 autumn
                    Alar Leibak, LT - Department of Cybernetics
                    Estonian
                      YMX0231Matemaatiline_analuus_I_ENG.pdf 
                      2020/2021 spring
                      Jüri Kurvits, LT - Department of Cybernetics
                      Estonian
                        YMX0231Matemaatiline_analuus_I_ENG.pdf 
                        2020/2021 autumn
                        Alar Leibak, LT - Department of Cybernetics
                        Estonian
                          YMX0231Matemaatiline_analuus_I_ENG.pdf 
                          2019/2020 spring
                          Jüri Kurvits, LT - Department of Cybernetics
                          Estonian
                            YMX0231Matemaatiline_analuus_I_ENG.pdf 
                            2019/2020 autumn
                            Jaan Janno, LT - Department of Cybernetics
                            Estonian
                              YMX0231Matemaatiline_analuus_I_ENG.pdf 
                              2018/2019 spring
                              Jüri Kurvits, LT - Department of Cybernetics
                              Estonian
                                YMX0231Matemaatiline_analuus_I_ENG.pdf 
                                2018/2019 autumn
                                Jaan Janno, LT - Department of Cybernetics
                                Estonian
                                  YMX0231Matemaatiline_analuus_I_ENG.pdf 
                                  Margus Pihlak, LT - Department of Cybernetics
                                  Estonian
                                    YMX0231Matemaatiline_analuus_I_ENG.pdf 
                                    2017/2018 spring
                                    Jüri Kurvits, LT - Department of Cybernetics
                                    Estonian
                                      YMX0231Matemaatiline_analuus_I_ENG.pdf 
                                      2017/2018 autumn
                                      Jaan Janno, LT - Department of Cybernetics
                                      Estonian
                                        YMX0231Matemaatiline_analuus_I_ENG.pdf 
                                        Course description in Estonian
                                        Course description in English