Numerical Methods
BASIC DATA
course listing
A - main register
course code
YMX0050
course title in Estonian
Arvutusmeetodid
course title in English
Numerical Methods
course volume CP
3.50
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
spring
language of instruction
Estonian
English
The course is a prerequisite
Geodetic Reference System (ETG5190)
Study programmes that contain the course
code of the study programme version
course compulsory
EATI02/25
no
EAXM15/25
no
IACB17/25
no
YAFB02/25
yes
display more
Structural units teaching the course
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Omandada teadmisi peamistest ligikaudsetest arvutusmeetoditest (ehk numbrilistest meetoditest). Õppida programmeerima arvutusmeetodeid.
course aims in English
To obtain a knowledge about main numerical methods. To obtain skills for programming the numerical methods.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- tunneb vea mõistet, selle liigitusi ja vigade ülekandumisprotsesse arvutustes;
- teab põhilisi numbrilisi meetodeid võrrandite, võrrandisüsteemide ja optimeerimisülesannete lahendamisel ning nende koonduvustingimusi ja koonduvuskiirusi;
- teab peamisi võtteid funktsioonide ja joonte lähendamisel (interpoleerimine, vähimruutude meetod) ning nende täpsusjärke;
- tunneb splaini mõistet, selle esitusviise ja oskab splaine kasutada funktsioonide lähendamisel;
- teab peamisi numbrilise diferentseerimise valemeid ja nende täpsusjärke;
- teab peamisi kvadratuur- ja kubatuurvalemeid, nende täpsusjärke ja Monte-Carlo meetodit;
- tunneb peamisi ühesammulisi ja mitmesammulisi meetoditest harilike diferentsiaalvõrrandite Cauchy ülesannete lahendamisel ja nende meetodite täpsusjärke;
- oskab programmeerida lihtsamaid arvutusmeetodeid.
learning outcomes in the course in Eng.
Permeator of the course:
- knows the concept of error, error classifications and error transmission in computation;
- knows the main numerical methods to solve equations, systems of equations and optimization problems and their conditions and rates of convergence;
- knowns the main tools for approximation of functions and curves (interpolation, least squares) and their orders of accuracy;
- knows the concept of the spline, representations of splines and is able to use splines in approximation of functions;
- knows main formulas of numerical differentiation and their orders of accuracy;
- knows main quadrature and cubature rules, their orders of accuracy and Monte-Carlo method;
- knows main one-step and multi-step methods to solve Cauchy problems for ordinary differential equations and their orders of accuracy;
- is able to program simpler numerical methods.
brief description of the course in Estonian
Arvutusvead. Võrrandite lahendamine. Harilik iteratsioonimeetod. Newtoni meetod. Kõõlumeetod. Kiirema languse meetod. Lineaarsete ja mittelineaarsete võrrandisüsteemide ning optimeerimisülesannete lahendamine. Funktsioonide interpoleerimine. Lagrange`i, Newtoni jt. interpolatsioonivalemid. Splainfunktsiooni mõiste. Interpoleerimine linear- ja kuupsplainiga. Joonte ja pindade lähendamine. Numbriline diferentseerimine ja integreerimine. Kordsete integraalide ligikaudne arvutamine. Hariliku diferentsiaalvõrrandi numbriline lahendamine. Euleri, Runge-Kutta, prognoosi-korrektsiooni ja Adamsi meetodid. Esimest järku diferentsiaalvõrrandisüsteemide lahendamine. Probleemõpe erinevate õppekavade tudengite kaasamisega.
brief description of the course in English
Errors and error analysis. Solution of equations. Ordinary iteration method. Newton's method. Regula falsi method. Method of the steepest descent. Solution of systems of linear and nonlinear equations and optimization problems. Interpolation by polynomials. The interpolation formula of Langrange, Newton etc. Spline function. Interpolation by splines. Approximation of curves and surfaces. Numerical differentiation and integration. Calculation of definite integrals by quadrature formulas. Approximate calculation of multiple integrals. Numerical solution of ordinary differential equations. Euler, Runge-Kutta, predictor-corrector and Adams methods. Solution of systems of first order differential equations. Problem-oriented study with students from different programmes.
type of assessment in Estonian
Õppeaine lõpphinne kujuneb teooria kontrolltööde ja laboratoorsete tööde punktide summeerimise kaudu. Laboratoorsetes töödes tuleb tudengil lahendada ülesandeid arvutusmeetodite abil.
type of assessment in English
The final grade of the course is computed via sum of credits of theoretical tests laboratory assignments. In laboratory assigments students have to solve problems by means of numerical methods.

independent study in Estonian
Iseseisev töö seisneb teoreetiliste materjalide läbitöötamises ja kodutööde täitmises. Töö maht statsionaarses õppes - 40 tundi, kaugõppes - 80 tundi
independent study in English
The self-dependent work of students consists in the learning of the theoretical material of the subject and in the solving home-problems. Learning capacities of the subject in the stationary learning is 40 hours and in the distance learning 80 hours.
study literature
Kohustuslik:
• Õppejõu konspekt
• Janno, J. Arvutusmeetodid. TTÜ kirjastus, 2008.
Soovituslik:
• Vaarmann, O. Arvutusmeetodid. TTÜ Kirjastus, 2005
• Epperson, J. F. An introduction to numerical methods and analysis. Wiley, 2002.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
0.0
practices
-
exercises
2.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2024/2025 spring
Jaan Janno, LT - Department of Cybernetics
Estonian
    YMX0050 Numerical methods.pdf 
    display more
    2023/2024 spring
    Jaan Janno, LT - Department of Cybernetics
    Estonian
      2022/2023 spring
      Jaan Janno, LT - Department of Cybernetics
      Estonian
        2022/2023 autumn
        Jaan Janno, LT - Department of Cybernetics
        Estonian
          2021/2022 spring
          Jaan Janno, LT - Department of Cybernetics
          Estonian
            YMX0050 Numerical methods.pdf 
            2020/2021 spring
            Jaan Janno, LT - Department of Cybernetics
            Estonian
              YMX0050 Numerical methods.pdf 
              2019/2020 spring
              Jaan Janno, LT - Department of Cybernetics
              Estonian
                YMX0050 Numerical methods.pdf 
                Course description in Estonian
                Course description in English