Continuum Mechanics
BASIC DATA
course listing
A - main register
course code
YFX1500
course title in Estonian
Pideva keskkonna mehaanika
course title in English
Continuum Mechanics
course volume CP
-
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
autumn
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
LAFM23/25
yes
YAFM02/22
yes
Structural units teaching the course
LT - Department of Cybernetics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Pideva keskkonna mehaanika on mehaanika osa, mis uurib gaaside, vedelike ja deformeeruvate tahkete kehade (tahkiste) liikumist välismõjutuste toimel. Kursuse eesmärgiks on esitada pideva keskkonna mehaanika põhialused mittelineaarses käsitluses. Teisisõnu, anda baasteadmised gaasides, vedelikes ja tahkistes toimuvate mehaanikaliste protsesside mittelineaarseks kirjeldamiseks.
course aims in English
Continuum mechanics is a branch of mechanics that deals with the analysis of the kinematics and mechanical behaviour of materials modelled as a continuum, e.g., solids and fluids (i.e., liquids and gases). The goal of the course is to present fundamentals of continuum mechanics in the nonlinear framework i.e., to give fundamental knowledge for describing mechanical processes in solids and fluids in the nonlinear framework.
learning outcomes in the course in Est.
Tunneb mittelineaarse pideva keskkonna mehaanika põhialuseid: Euleri ja Lagrange’i koordinaadid, erinevad deformatsiooni- ja pingetensorid, materiaalne tuletis, kõverjoonelised koordinaadid, kovariantne osatuletis, jäävusseadused, olekuvõrrandid, pideva keskkonna mehaanika põhivõrrandite süsteem. Oskab rakendada tensorarvutust.
learning outcomes in the course in Eng.
Knows fundamentals of nonlinear continuum mechanics: Lagrangian and Eulerian coordinates, different strain tensors and stress tensors, material derivative, curvilinear coordinates, covariant partial derivative, conservation (balance) laws, constitutive equations, fundamental system of equations of continuum mechanics
brief description of the course in Estonian
Mittelineaarse pideva keskkonna mehaanika põhieeldused ja hüpoteesid. Deformeeruva keha kinemaatika: liikumise kirjeldamine ruumilistes ja materiaalsetes koordinaatides; siire ja deformatsioon; skalaar, vektor ja tensor; vektori ja tensori ko- ja kontravariantsed komponendid; baasivektor ja meetriline tensor; kovariantne osatuletis; deformatsioonitensorid; pidevustingimused; deformatsioonide erijuhud; materiaalne tuletis; materiaalse punkti kiirus ja kiirendus; joon-, pind- ja ruumintegraalide kinemaatika; trajektoor ja voolujoon; deformatsioonikiiruse tensor ja keeriselisuse tensor. Pideva keskkonna dünaamika: massi jäävuse seadus; liikumishulga tasakaalu seadus; kineetilise momendi tasakaalu seadus; energia jäävuse seadus; Cauchy pinge (tegelik pinge), Piola–Kirchoffi pinge ja vastavad pingetensorid. Energia ja entroopia; termodünaamiline ja mehaanikaline tasakaal. Olekuvõrrandid: olekuvõrrandite tuletamise meetodid, olekuvõrrandite aproksimatsioonid, elastse keskkonna mudelid, Stokesi vedelik. Pideva keskkonna mehaanika põhivõrrandite süsteem tahkistele ja vedelikele.
brief description of the course in English
Basic assumptions, concepts and hypothesis of nonlinear continuum mechanics. Spatial (Eulerian) and material (Lagrangian) coordinates. Deformation and displacement. Scalar, vector and tensor. Co- and contravariant components of vectors and tensors. Base vectors and metric tensor. Covariant partial derivative. Strain tensors. Compatibility conditions. Some special deformations. Material derivative, velocity and acceleration of particle (spatial and material representation). Trajectory and streamline. Kinematics of line-, surface- and volume integrals. Strain rate and spin tensors. Energy and entropy. Thermodynamical and mechanical equilibrium. Axioms of dynamics: mass conservation, balance of momentum, balance of angular momentum, conservation of energy. Chaucy stress (true stress), Piola-Kirchoff stress (pseudo stress) and corresponding stress tensors. Constitutive equations and their approximations: methods of derivation, models of elastic bodies, Stokesian fluids. Fundamental system of equations of continuum mechanics for solids and for fluids.
type of assessment in Estonian
Eksami tulemus saadakse kodutööde ja teooriatöö tulemuste kaalutud keskmisena.
type of assessment in English
The final grade is calculated as a weighted mean of results of homeworks and theory test.
independent study in Estonian
2-3 kodutööd.
independent study in English
2-3 homeworks
study literature
Põhiõpikud:
A. Salupere, Pideva keskkonna mehaanika. Loengukonspekt, http://www.ioc.ee/~salupere/loko.html,
M.N.L. Narasimhan. Principlec of Continuum Mechanics. John Wiley & Sons, Inc., New-York et al., 1993,
A.C. Eringen, Nonlinear theory of con
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
0.0
practices
-
exercises
2.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus or link to Moodle or to home page
2024/2025 autumn
Martin Lints, LT - Department of Cybernetics
English
    YFX1500 Continuum Mechanics Methods of evaluation.pdf 
    display more
    2023/2024 autumn
    Martin Lints, LT - Department of Cybernetics
    English
      2022/2023 autumn
      Martin Lints, LT - Department of Cybernetics
      English
        2021/2022 autumn
        Martin Lints, LT - Department of Cybernetics
        English
          YFX1500 Continuum Mechanics Methods of evaluation.pdf 
          2020/2021 autumn
          Andrus Salupere, LT - Department of Cybernetics
          English
            YFX1500 Continuum Mechanics Methods of evaluation.pdf 
            2019/2020 spring
            Andrus Salupere, LT - Department of Cybernetics
            English
              YFX1500 Continuum Mechanics Methods of evaluation.pdf 
              2019/2020 autumn
              Andrus Salupere, LT - Department of Cybernetics
              English
                YFX1500 Continuum Mechanics Methods of evaluation.pdf 
                2018/2019 spring
                Andrus Salupere, LT - Department of Cybernetics
                English
                  YFX1500 Continuum Mechanics Methods of evaluation.pdf 
                  2018/2019 autumn
                  Andrus Salupere, LT - Department of Cybernetics
                  English
                    YFX1500 Continuum Mechanics Methods of evaluation.pdf 
                    Course description in Estonian
                    Course description in English