course aims in Estonian
• haridustaseme tõstmine kvantmehaanika seaduspärasuste põhjalikuma tundmaõppimisega, mis on vajalik erialakursuse omandamiseks tehnilise füüsika erialal, samuti ka kõigil teistel tänapäeva tehnika ja tehnoloogiaga seotud erialadel;
• süsteemse, kaasaja teadusel baseeruva füüsikalise maailmapildi kujundamine ja edasiarendamine.
course aims in English
• raising the educational level studying the basics of quantum mechanics which is needed for special courses in technical physics and for all specialities, connected with modern technics and technologies;
• shaping and developing a systematic, modern physics based view of the world by applying the scientific method.
learning outcomes in the course in Est.
• teab ja saab aru kvantmehaanika põhialustest, mikromaailmas valitsevatest seaduspärasustest ja nende rakendatavuse piiridest;
• oskab kasutada kvantmehaanikat mikromaailma probleemide analüüsil ja lahendamisel;
• tunneb kvantmehaanika matemaatilist formalismi ja on edaspidi võimeline omandama kvantväljateooria aluseid;
• oskab kasutada kvantmehaanikat rakendusfüüsika ja inseneriteadustega seotud probleemide analüüsil ning iseseisva töö korral kirjandusega;
• oskab seostada kvantmehaanikat tehnika toimimise ja meid ümbritseva elukeskkonna nähtuste kirjeldamisel ja analüüsil.
learning outcomes in the course in Eng.
• knows and understands the basic laws of quantum mechanics and limits of their applicability;
• able to use quantum mechanics in analyzing and solving of problems;
• is familiar with the mathematical formalism of quantum mechanics and is able to study the elements of quantum field theory;
• is able to apply quantum mechanics to the analysis of problems in applied physics and engineering science, and in independent research;
• able to make connections to quantum mechanics while describing and analyzing the phenomenons in our surrounding environment.
brief description of the course in Estonian
Kvantmehaanika põhialused: lainefunktsioon, Schrödingeri võrrand, operaatorid, hermiitilised operaatorid, määramatuse seosed. Harmooniline ostsillaator: energia, lainefunktsioonid, Hermite'i polünoomid, tekitajafunktsioon, integraalide arvutamine. Impulsimoment, omaväärtused, kerafunktsioonid. Vesiniku aatom, energia, lainefunktsioonid, kvantolekud, kvantarvud. Atomaarsed voolud, seos magnetmomendi ja impulsimomendi vahel. Schrödingeri võrrand välise elektromagnetvälja korral, kalibratsiooninvariantsus. Esituste teooria alused, olekufunktsioonide ja operaatorite maatrikskuju. Impulsimomendi maatriksesitus, momentide liitmine. Elektroni spinn. Pauli võrrand. Ajast sõltumatu häiritusarvutus, ajast sõltuv häiritusarvutus. Elektromagnetilised üleminekud, valikureeglid. Zeemani efekt. Aatomite dia- ja paramgnetism. Füüsikaliste suuruste muutumine ajas, jäävusseadused. Diraci võrrand. Energianivoode peenstruktuur. Hajumisteooria alused, hajumisamplituud, hajumise ristlõige. Identsete osakeste süsteem. Heeliumi aatom. Vesiniku molekul.
brief description of the course in English
Basics of quantum mechanics: wave function, Sachrödinger equation, operators, Hermitean operators, uncertainty relations. Harmonic oscillator: energy, wave functions, Hermitean polynomials, generating function, integrals. Angular momentum, eigenvalues, spherical functions. Hydrogen atom, energy, wave functions, quantum states, quantum numbers. Atomical currents, connection between magnetic and angular momentum. Schrödinger equation in the presence of external electromagnetic field, gauge invariance. Basics of representation theory, matrix from of functions and operators. Matrix representation of angular momentum, adding of momenta. Spin, Pauli equation. Time independent perturbation theory, time dependent perturbation theory. Electromagnetic transitions, selection rules. Zeeman effect. Dia and paramagnetism of atoms. Changing of physical quantities in time, conservation laws. Dirac equation. Fine structure of energy levels. Basics of scattering theory, scattering amplitude, scattering cross section. System of identical particles. Helium atom. Hydrogen molecule.
type of assessment in Estonian
Hindamine toimub TTÜ-s kehtestatud eeskirja kohaselt.
type of assessment in English
According to the rules established in TUT
independent study in Estonian
Ülesannete lahendamine ja analüüs. Õppekirjanduse lugemine.
independent study in English
Independent reading of textbooks of physics, solving problems and exercises.
study literature
1. E: Merzbacher. Quantum Mechanics, JohnWiley&Sons Inc., New York-London, 1998
2. A.S. Davõdov. Kvantovaja mehanika, M. 1982.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):