Mathematical models
BASIC DATA
course listing
A - main register
course code
NTS1130
course title in Estonian
Matemaatilised mudelid
course title in English
Mathematical models
course volume CP
4.00
ECTS credits
6.00
to be declared
yes
assessment form
Pass/fail assessment
teaching semester
spring
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
EDTR17/25
no
Structural units teaching the course
ET - Tartu College
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
NB! Õppeainet loetakse ainult Tartu kolledžis.

- Esitada modelleerimiseks kasutatavate diferentsiaalvõrrandite lahendusmeetodid.
- Esitada matemaatilise modelleerimise teoreetilised alused.
- Anda teadmisi mudelite rakendustest looduslike ja tehisprotsesside modelleerimisel.
course aims in English
NB! The course is taught only in Tartu College.

- To introduce the basIc knowledge of differencial equations used in modelling.
- To give the theoretical base of mathematical modelling.
- To give knowledge of the applications of mathematical models in modelling of the processes in natural and built environments.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- oskab lahendada modelleerimisel kasutatavaid harilikke diferentsiaalvõrrandeid ja nende süsteeme;
- tunneb matemaatilise modelleerimise teoreetilisi alused, sh modelleerimise põhimõisteid, mudelite tüüpe, staatilisi ja dünaamilisi mudeleid;
- oskab hinnata pidevaid ja diskreetseid mudeleid.
- oskab konstrueerida lihtsamaid rakenduslikke mudeleid.
learning outcomes in the course in Eng.
Having finished the study of the subject a student is able:
- to solve ordinary differential equations and systems of differential equations;
- to know basic of modelling, incl modelling elements, types of models, static and dynamic models;
- to construct easier applied models.
brief description of the course in Estonian
Matemaatilise mudeli mõiste. Modelleerimise ajaloost ( Malthuse, Verhlust’i jne mudelid). Modelleerimise põhimõisted. Mudelit tüübid. Diferentsiaalvõrrandid ja diferentsvõrrandid. Kompleksus ja struktuur. Mudeli verifikatsioon, kalibreerimine ja validatsioon. Staatilised ja dünaamilised mudelid. Ekviliibriumseis. Populatsiooni dünaamika modelleerimine. Diferentsiaalvõrrandite süsteemid.Dünaamilised süsteemid, nende stabiilsus, ekviliibrium. Lotka-Volterra kütt-saak mudel, selle edasiarendused. Ekoloogilised mudelid. Mudelite koostamine arvutil.
brief description of the course in English
Notion of mathematical models. History of modelling (Malthus, Verhulst, etc models). Modelling elements. Types of models. Differential equations and difference equations. Models complexity and structure. Verification. Sensitivity analysis. Parameter estimation. Model testing and validation. Static and dynamic models. Equilibrium state. Modelling population dynamics. Systems of differential equations. Stability of dynamic systems, equilibria. Lotka-Volterra predator-prey model, derived models. Ecological models. Computer simulation of models.
type of assessment in Estonian
Teadmiste kontroll toimub arvestusel. Üliõpilane peab arvestusele pääsemiseks olema lahendanud kodune töö ja sooritanud kontrolltöö (sooritatud vähemalt 51 punktile. Koduse töö annab ja kontrolltööd viib läbi harjutustunde teostav õppejõud. Arvestusel kontrollitakse üliõpilase teoreetilisi teadmisi modellerimisest vastavalt õppeaine sisule.: lihtsamate faktide tõestusi, mõistete definitsioone ja vaadeldavate mudelite omadusi. Kokkuleppel õppejõuga võib ainet sooritada osade kaupa semestri jooksul.
type of assessment in English
The control of knowledges takes place in a final test at the end of the term. For getting a permission to a test it is necessary to solve a home-work and perform a test (getting for each of them at least 51 points). Home-work and test are carried out by lecture. In the final test the following knowledges are checked: proofs of elementary facts, the main notions and the main properties of considerable mathematical models. The lecturer has a right to examine students by parts during a term. The final grade of the course will be computed as a weighted mean of the homework, test and the final test.
independent study in Estonian
Iseseisev töö seisneb teoreetiliste materjalide läbitöötamises ja kodutööde täitmises. Töö maht– 64 tundi.
independent study in English
-
study literature
Sikk,J. Matemaatiline modellerimine keskkonna erialadele. Tartu, 2006.
Täiendav kirjandus:
Edelstein - Keshet, L. Mathematical Models in Biology. Siam, 2005.
Sikk,J,; Vallner, H. Diferentsiaalvõrrandid. Tartu, 2012.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
1.5
lectures
-
practices
0.0
practices
-
exercises
2.5
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2018/2019 spring
Helle Hallik, ET - Tartu College
Estonian
    display more
    2016/2017 spring
    Jaak Sikk, ET - Tartu College
    Estonian
      Course description in Estonian
      Course description in English