AI and bigdata analysis in environmental research
BASIC DATA
course listing
A - main register
course code
NSO8025
course title in Estonian
AI ja suurandmed keskkonna uuringutes
course title in English
AI and bigdata analysis in environmental research
course volume CP
-
ECTS credits
6.00
to be declared
yes
assessment form
Pass/fail assessment
teaching semester
autumn
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Introduction to Programming in Python (YFX0500)
Prerequisite 2
Mathematical Analysis (YMX0230)
Study programmes that contain the course
code of the study programme version
course compulsory
LARB17/25
yes
YAFB02/25
no
Structural units teaching the course
LM - Department of Marine Systems
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Õppeaine eesmärk on:
- tutvustada erinevaid suurandmete andmeformaate ja tööriistu nende kasutamiseks;
- õpetada suurandmete esmast töötlust;
- õpetada masinõppe meetodite rakendamist suurandmete analüüsimisel.
course aims in English
The aim of this course is to:
- to introduce different bigdata formats and tools to manipulate the data;
- to teach preliminary data management and editing tools;
- to introduce AI application in earthscience data and methods for the basic data analysis.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- teab suuremaid rahvusvahelisi keskkonnaandmete repositooriume ning oskab neist andmeid alla laadida;
- oskab kasutada esmaseid andmete visualiseerimise vahendeid;
- oskab kasutada tööriistu suurandmete töötlemiseks ning keskkondi nende haldamiseks;
- tunneb ja oskab rakendada erinevaid interpoleerimismeetodeid;
- suudab klassifitseerida geograafilisi piirkondi ning perioode teatud tunnuste järgi, kasutades lihtsamaid masinõppel põhinevaid meetodeid;
- oskab valmistada andmestike sisendandmeks masinõppe rakendustele.
learning outcomes in the course in Eng.
After completing this course the student:
- knows the largest environmental bigdata repositories and can efficiently acquire big datasets;
- knows how to use commandline tools for the bigdata and how to efficiently manage the software repositories;
- can perform simple geospatial classification of the data;
- knows different data interpolation methods;
- can create proper input data for the machine learning applications.
brief description of the course in Estonian
Õppeaine käigus omandab õpilane kogemusi ruumiliste suurandmete (satelliit kaardid, numbriliste mudelite suurandmed, konsolideeritud in situ vaatlused, jne...) esmaseks töötluseks. Õpilastele tutvustatakse erinevaid andmeformaate ning rahvusvahelisi andmerepositooriume. Andmetöötluseks kasutatakse tsentraalselt hallatavat arvutusmasinat, mis annab algteadmised töötamaks käsurea kaudu suurtes arvutuskeskustes.
brief description of the course in English
During the course student acquires skills to work with geospatial big data (sattelite images, gridded data from numerical models, combined in situ databases, etc ... ). Course introduces different data formats and international data repositories for open data.
type of assessment in Estonian
Kodutöid ( 5 ) hinnatakse vahemikus 0 ... 1. Lisaülesannete eest on võimalik teenida lisaks 20%.
Arvestuse saamiseks tuleb kõikide kodutööde eest kokku koguda 4 punkti, tingimusega, et kõik tööd on sooritatud 80% ulatuses.
type of assessment in English
The home assignments are evaluated using a score from 0 to 1. The additional tasks can increase the score by 20%. To pass the course the student must gather a total of 4 points with the condition that all assignments have to be completed with 80%.
independent study in Estonian
-
independent study in English
-
study literature
- Ray Abernathey, 2021, An Introduction to Earth and Environmental Data Science
https://earth-env-data-science.github.io/intro.html
- Dave Heslop, 2021, An Introduction to MATLAB for Geoscientists
- Introduction to the Mathematical Marine Ecology
https://mathmarecol.github.io/Welcome/index.html
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
1.0
lectures
-
practices
2.0
practices
-
exercises
1.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Ilja Maljutenko, LM - Department of Marine Systems
Estonian
    display more
    2024/2025 autumn
    Ilja Maljutenko, LM - Department of Marine Systems
    Estonian
      assessment_eng.pdf 
      2023/2024 autumn
      Ilja Maljutenko, LM - Department of Marine Systems
      Estonian
        2022/2023 autumn
        Ilja Maljutenko, LM - Department of Marine Systems
        Estonian
          Course description in Estonian
          Course description in English