course aims in Estonian
Õppeaine eesmärk on:
- anda baasteadmised kiirguslevist, mereoptikast ja signaalitöötlusest, mis on aluseks satelliitkaugseire meetodite rakendamisel mere, atmosfääri ning maapinna protsesside jälgimisel;
- anda ülevaade kaasaegsetest kaugseire meetoditest;
- anda oskused kaugseire andmete valideerimiseks mõõtmisandmetega;
- anda praktilised oskused kaugseire andmete töötlemiseks ja analüüsiks (rõhk ruumiandmete statistilisel analüüsil);
- anda oskus rakendada ruumiandmete analüüsi interdistsiplinaarsetes keskkonna uuringutes, kombineerides kaugseire andmeid, kontaktmõõtmisi ja mudeli väljasid.
course aims in English
The aim of this course is to:
- provide basic knowledge on radiation transfer, signal processing and marine optics, which form the basis for the application of satellite remote sensing methods in the monitoring of ocean, atmosphere and Earth surface processes;
- give an overview of modern remote sensing methods;
- provide skills for validating remote sensing data with in situ measurements;
- provide practical skills for remote sensing data processing and analysis (emphasis on statistical analysis of spatial data);
- provide the skills to apply spatial data analysis in interdisciplinary environmental studies by combining remote sensing data, contact measurements and model fields.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- annab ülevaate kaugseire meetodite eripäradest ja rakendamise võimalustest;
- kasutab ruumiandmete töötlemise tarkvara (nt SNAP, QGIS ja Python) satelliitpiltide ruumiliseks ja statistiliseks analüüsiks;
- hindab keskkonna muutusi satelliitpiltide analüüsi põhjal;
- hindab kaugseire andmete täpsust (valideerimine) ja seostab kaugseire andmetest saadud informatsiooni kontaktmõõtmiste ja mudelväljadega.
learning outcomes in the course in Eng.
After completing this course, the student:
- provides an overview of the remote sensing methods and their possibilities of implementation;
- uses spatial data processing software (SNAP, QGIS and Python) for spatial and statistical analysis of satellite images;
- evaluates environmental changes using the analysis of satellite images;
- assesses the accuracy of remote sensing data (validation) and relates the information obtained from remote sensing data to in situ measurements and model fields.
brief description of the course in Estonian
Loengutes antakse ülevaade kaugseire sensoritest ja meetoditest (aine NSO0171 “Kaugseire ja geoinfosüsteemid“ kiire kordamine) ning tutvustatakse kaugseire tehnoloogiate arenguid: multispektraalsed optilised satelliitpildid, erinevate radarite andmed, lidar mõõtmised lennukilt, infrapuna satelliitpildid, ortofotod jne. Peamised baasteadmised, millele keskendutakse on kiirguslevi, mereoptika ja signaalitöötlus, mis on aluseks praktilistele kaugseire töödele.
Käsitletakse kaugseire (suur)andmete kasutamist järgmistes valdkondades: (i)merekeskkond ja rannikud, (ii) atmosfäär ja kliima ning (iii) geoloogilised protsessid ja pinnamuutused.
Läbi 6 iseseisva praktiliste töö kinnistatakse teadmised ja omandatakse oskused kaugseire andmetest keskkonnainfo arvutamiseks. Iseseisvad tööd keskenduvad kaugseire andmete valideerimisele ja valideeritud andmete (ruumilisele ja statistilisele) analüüsile.
brief description of the course in English
The lectures part of the course provides an overview of remote sensing instruments and methods (brief repetition of course NSO0171” Remote sensing and GIS”) and introduces recent advances in remote sensing technologies: multispectral optical satellite images, data from various radars, lidar measurements from aircraft, infrared satellite images, orthophotos, etc. The main fields of fundamental knowledge that are discussed during the course include topics such as radiation transfer, marine optics and signal processing, which form the basis for practical implementation of remote sensing methods.
The exploitation of remote sensing (big)data in the following fields is dealt with during the course: (i) marine environment and coasts, (ii) atmosphere and climate, and (iii) geological processes and surface changes.
The obtained knowledge and skills are consolidated through 6 independent practical exercises focusing on retrieving environmental information from remote sensing data. Independent practical exercises focus on the validation of remote sensing data and the (spatial and statistical) analysis of the validated data.
type of assessment in Estonian
Kursus lõppeb kirjaliku eksamiga (teooriaküsimused), mis moodustab 70% lõpphindest. Eksami eeldus on kõigi kursuse käigus tehtud iseseisvate tööde (6 tk) sooritamine, mis moodustavad kokku 30% lõpphindest.
type of assessment in English
The course ends with a written exam (theory part) accounting for 70% of the final grade. The prerequisite for the exam is successful completion of all independent assignments (6 exercises) during the course, which make up a total of 30% of the final grade.
independent study in Estonian
6 iseseisvat praktilist tööd kaugseire andmetest keskkonnainfo arvutamiseks.
independent study in English
6 independent practical exercises that focus on retrieving environmental information from remote sensing data.
study literature
- Regulaarselt uuendatavad materjalid kursuse lehel Moodle'i keskkonnas (regularly updated materials on the course page on Moodle);
- Robinson, I.S. 2004. Measuring the Oceans from Space. Springer;
- Kidder, S.Q., Vonder Haar, T.H. 1995. Satellite Meteorology. Academic Press.
- Claude, Shane R. Polarisation: applications in remote sensing. 2015. Oxford: Oxford University Press
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lecturer in charge
Sander Rikka, vanemteadur (LM - meresüsteemide instituut)