course aims in Estonian
Õppeaine võimaldab üliõpilastel omandada arusaamise tehisintellekti (AI) seostest äritegevusega ning ülevaate nende ärirakendustest. Õppeaine õpetab tuvastama ja hindama sobivaid AI rakendusi, mis võimaldavad parandada erinevaid äriprotsesse ja ärimudeleid. Üliõpilased omandavad praktilised oskused masinõppe ja loomuliku keele töötlemise valdkondades.
course aims in English
The aim of this course is to help students to understand the fundamental principles and business implications of Artificial Intelligence. The course is enabling them to identify and assess suitable AI applications to enhance various business processes and models. Students will gain practical skills in machine learning and natural language processing.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- tunneb AI terminoloogiat ja meetodeid äritegevuses, et teha koostööd AI meeskondadega;
- analüüsib AI rakendatavust ärikasutusjuhtumite osas;
- konfigureerib AI tööriistu valitud äriprotsesside automatiseerimiseks;
- kavandab ja viib läbi AI rakenduse piloottestimist;
- kasutab meetodeid AI rakenduste tõhususe hindamiseks.
learning outcomes in the course in Eng.
After completing the course, the student:
- knows AI terminology and methods in business operations to work with AI teams;
- analyzes the applicability of AI in terms of business use cases;
- configures AI tools to automate selected business processes;
- designs and conducts pilot testing of an AI application;
- uses methods to evaluate the effectiveness of AI applications.
brief description of the course in Estonian
AI arengute äriperspektiivid, AI-keskne ettevõte, AI ökosüsteem, AI kasutamine äriotsuste tegemisel, AI projektide juhtimine, Inimtegurid ja tehisintellekt, AI lahenduste tõhususe mõõtmine, Masinõppe meetodid äritegevuses, Loomuliku keele töötlemise (NLP) ärirakendused, Suured keelemudelid ja suured multimodaalsed mudelid, Ennustavad mudelid, Automatiseeritud andmeanalüüs, AI ärirakendused, Otsustugisüsteemid (DSS).
brief description of the course in English
Business perspectives of AI development, AI-centered company, AI ecosystem, AI usage in business decision-making, AI project management, Human factors and AI, Measuring the effectiveness of AI solutions, Machine learning methods in business, Natural language processing (NLP) business applications, Large language models and large multimodal models, Predictive models, Automated data analysis, AI business applications, Decision support systems (DSS).
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Patel, 2020, Lean AI: How Innovative Startups Use Artificial Intelligence to Grow;
Kejriwal, 2022, Artificial Intelligence for Industries of the Future: Beyond Facebook, Amazon, Microsoft and Google (Future of Business and Finance);
Corea, 2019, Applied Artificial Intelligence: Where AI Can Be Used In Business;
Weber, 2023, Artificial Intelligence for Business Analytics. Algorithms, Platforms and Application Scenarios;
Kreutzer, 2020, Understanding Artificial Intelligence: Fundamentals, Use Cases and Methods for a Corporate AI Journey;
Larsen, 2021, Automated Machine Learning for Business
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):