course aims in Estonian
Aine eesmärk on arendada praktilisi oskuseid majandus-, rahandus- ja äriprobleemide analüüsimiseks, kasutades erinevaid empiirilisi meetodeid ning statistika- ja ökonomeetriatarkvara.
course aims in English
The aim of this course is to equip students with advanced practical skills in empirical analysis, specifically tailored to solve real-world problems in economics, finance, and business. Students will develop expertise in formulating testable hypotheses, applying a range of statistical and econometric techniques, and using specialized computing software.
learning outcomes in the course in Est.
Üliõpilane:
- oskab püstitada empiiriliselt testitavaid majandus-, rahandus- või ärialaseid hüpoteese;
- oskab rakendada erinevaid empiirilisi modelleerimismeetodeid ja valida konkreetsete hüpoteeside testimiseks sobivad;
- oskab hinnata valitud empiirilise meetodi eeldusi ja piiranguid;
- oskab kirjalikult ja suuliselt selgitada ökonomeetrilise analüüsi strateegiat ja rakendatud metoodikat;
- oskab empiirilise analüüsi tulemusi tõlgendada nii statistiliselt kui (majandusliku) uurimisprobleemi kontekstis.
learning outcomes in the course in Eng.
The student:
- is able to set up empirically testable hypotheses in economics/finance and/or business;
- is able to apply multiple empirical modelling techniques and to choose the appropriate technique for testing a given set of hypotheses;
- can evaluate the assumptions and assess the limitations of chosen empirical methods;
- is able to explain both in writing and verbally the methods, assumptions and results of the empirical analysis;
- can interpret and communicate the results in the context of the research problem.
brief description of the course in Estonian
Empriirilised rakendused majandusmõjude hindamisel, majandusarengute prognoosimisel ning mittevaadeldavate suuruste, sh efektiivsus, riskid, palgalõhe mõõtmisel ja dekomponeerimisel. Sekkumise mõjude hindamine kvaasi-eksperimentaalse disaini meetoditega (quasi-experimental design). Määramatus, ratsionaalsus ja efektiivsus aegridade analüüsis ja prognoosis, prognoosi täpsuse hindamine. Paneelandmete rakendused. Lõimitud regressioonvõrrandite hindamine mittelineaarsete, piiratud vaadeldavusega ning endogeensete tunnuste korral rakendades nii (korduv) ristandmeid kui (pseudo)paneelandmeid. Tootmisvõimekuse piirkõvera ja efektiivsuse hindamine, determineeritud ja parameetrilised lähenemised.
brief description of the course in English
Empirical applications in causal inference and evaluation. Time-series forecasting. Measurement and decompositions of unobserved quantities of economic interest, such as productivity frontier and efficiency or the wage gap. Program evaluation with quasi-experimental designs. Uncertainty, rationality and efficiency in forecasting with time-series, assessment of forecast accuracy. Panel-data applications. Extended regressions, joint estimation of triangular systems with non-linearities, limited-observability and endogeneity in (repeated) cross-sections and in (pseudo)panels. Deterministic and parametric methods of productivity and efficiency measurement and estimation.
type of assessment in Estonian
Eristav hindamine: ainemoodulite kirjalikud tööd.
type of assessment in English
Grading: course module assignments.
independent study in Estonian
Õppematerjalide ja -kirjanduse läbitöötamine, praktilisteks harjutusteks ja kirjalikeks töödeks ettevalmistumine.
independent study in English
Work independently with the course materials and background literature and prepare for practical exercises and home assignments.
study literature
Clements, M. P., Hendry, D. F. (2002), A companion to economic forecasting, Wiley-Blackwell.
Cerulli, G. (2015) Econometric evaluation of socio-economic programs : theory and applications, Springer.
Bazen, S. (2011) Econometric Methods for Labour Economics. Oxford University Press.
Goldstein, H. Multilevel Statistical Models (2011). John Wiley & Sons. Tsay, Ruey S. An introduction to analysis of financial data with R. John Wiley & Sons, 2014.
Cameron, A. C., and P. K. Trivedi. 2005. Microeconometrics: Methods and Applications. New York: Cambridge University Press.
study forms and load
daytime study: weekly hours
3.0
session-based study work load (in a semester):
lecturer in charge
Kadri Männasoo, täisprofessor tenuuris (ME - majandusanalüüsi ja rahanduse instituut)