course aims in Estonian
Aine eesmärk on arendada kaasaegsete ökonomeetria meetodite rakendamise oskusi majandusprobleemide lahendamiseks, majandusteoreetiliste kontseptsioonide ja hüpoteeside kontrollimiseks. Lisaks süvendada üliõpilaste empiirilise uurimustöö kogemusi, kasutades selleks sobivaid tarkvarasid.
course aims in English
The aim of this course is to advance skills in applying modern econometric methods to solve economic problems via testing various hypotheses and theoretical concepts. Additionally, to deepen students’ experience conducting empirical research by applying econometric methods using appropriate software.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- oskab püstitada majandusprobleemidega seotud hüpoteese ning valida empiiriliseks analüüsiks sobiva ökonomeetrilise meetodi;
- kasutab erinevaid rist-, aeg- ja paneelandmetele kohalduvaid ökonomeetrilisi meetodeid nii agregeeritud (makro)andmete kui ka mikroandmete kontekstis;
- viib läbi ökonomeetrilist analüüsi, kasutades Stata ja EViews tarkvara;
- analüüsib ja tõlgendab ökonomeetrilise mudeli tulemusi nii suuliselt kui ka kirjalikult;
- teab aines käsitletud ökonomeetriliste mudelite eelduseid ja piiranguid.
learning outcomes in the course in Eng.
After completing this course, the student:
- can formulate hypotheses related to economic problems and choose an appropriate econometric method for empirical analysis;
- applies different econometric models for cross-section, time-series and panel data both in macro- and microeconomic contexts;
- conducts econometric analysis with Stata and EViews software;
- analyses and interprets the results of the econometric models both verbally and in writing;
- is aware of the assumptions and limitations of the models discussed during the course.
brief description of the course in Estonian
Statsionaarsed ühemõõtmelised aegridade mudelid. Mittestatsionaarsed aegread ja ühikjuur. Mitmemõõtmelised aegridade mudelid. Kointegratsioon ja veaparandusmudelid. Ühikjuure testid ja kointegratsioon. Heteroskedastiivsus – üldistatud ja kaalutud vähimruutude meetod. Nihketa/mõjusate hinnangute eeldused ja endogeensuse tekkepõhjused. Instrumentaalhinnangud. Üldistatud lineaarsed mudelid ja suurima tõepära hinnangumeetod. Staatilised ja dünaamilised lineaarsed paneelandmete mudelid.
brief description of the course in English
Stationary univariate time series models. Nonstationary time series and unit root. Multivariate time series models. Cointegration and error correction models. Unit root tests and cointegration. Heteroskedasticity- generalized and weighted least squares method. Assumptions of unbiased/effective estimates and causes of endogeneity. Instrumental estimates. Generalized linear models and maximum likelihood estimation method. Static and dynamic linear models of panel data.
type of assessment in Estonian
Vaheeksam aegridade teemadel (50%), eksam mikroökonomeetria teemadel (50%), soovijatel võimalik lahendada iga mikroökonomeetria osa teema kohta Moodle test boonuspunktide kogumiseks.
type of assessment in English
Midterm exam on time series (50%), exam on microeconometrics (50%), those who wish can solve Moodle tests about each topic in the microeconometrics section to collect bonus points.
independent study in Estonian
- Kirjanduse ja lisamaterjaliga tutvumine
- Loengumaterjalide läbitöötamine
- Stata ja EViews ülesannete iseseisva lahendamise proovimine
- Enesekontrolli ja boonuspunkte andvate testide tegemine
independent study in English
- Familiarizing yourself with literature and additional material
- Reviewing lecture materials
- Trying to solve problems independently in Stata and EViews software
- Taking self-tests and tests that provide bonus points
study literature
Brooks, C. (2019). Introductory Econometrics for Finance. Cambridge University Press.
Schopol, L., Wichmann, R., & Brooks, C. (2019). “Stata Guide to Accompany Introductory Econometrics for Finance”
Verbeek, M. (2012). A Guide to Modern Econometrics. John Wiley & Sons.
Wooldridge, J. M. (2020). Introductory Econometrics: A Modern Approach. Cengage.
study forms and load
daytime study: weekly hours
3.0
session-based study work load (in a semester):