Algorithmic investing
BASIC DATA
course listing
A - main register
course code
MEF5170
course title in Estonian
Algoritmiline investeerimine
course title in English
Algorithmic investing
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
TARM02/25
no
Structural units teaching the course
ME - Department of Economics and Finance
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Aine eesmärk on arendada üliõpilaste kvantitatiivseid oskusi ning suutlikkust luua, rakendada ja hinnata algoritmilisi investeerimisstrateegiaid nii traditsioonilistes kui ka alternatiivsetes varaklassides.
course aims in English
The aim of the course is to develop students’ quantitative skills and their ability to design, implement, and evaluate algorithmic investment strategies across both traditional and alternative asset classes.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- selgitab algoritmilise investeerimise ning kauplemise põhialuseid ning võrdleb turu mikrostruktuuri traditsioonilistel ning alternatiivsetel turgudel, sh plokiahelal;
- kasutab ja rakendab sobivat programmeerimiskeelt ja töövaheneid finantsandmete kogumiseks, puhastamiseks, visualiseerimiseks ning investeerimisstrateegiate testimiseks;
- analüüsib finantsaegridasid ning plokiahela andmestikku konstrueerimaks kvantitatiivseid signaale, kasutades traditsioonilisi statistilisi ja masinõppe meetodeid;
- hindab strateegiate tulemuslikkust ning riske, kasutades riskijuhtimise, portfelli optimeerimise ning tulemuslikkuse hindamise mõõdikuid ja tehnikaid.
learning outcomes in the course in Eng.
A student who has completed the course:
- explains the fundamentals of algorithmic investing and trading, and compares market microstructure in traditional and alternative markets, including blockchain-based platforms;
- applies an appropriate programming language and tools to collect, clean, visualize, and test financial data and investment strategies;
- analyzes financial time series and blockchain datasets to construct quantitative signals using traditional statistical and machine learning methods;
- evaluates the performance and risks of strategies using risk management, portfolio optimization, and performance evaluation metrics and techniques.
brief description of the course in Estonian
Algoritmilise investeerimise alused, turu mikrostruktuuri võrdlus traditsioonilistel ja detsentraliseeritud turgudel. Pythoni ja töövahendite kasutamine finants- ja plokiahela andmete kogumiseks, puhastamiseks ja visualiseerimiseks. Kvantitatiivsete strateegiate (keskmisele tagasipöördumine, momentum, statistiline arbitraaž) konstrueerimine ja testimine. Aegridade modelleerimine traditsiooniliste statistiliste meetodite (ARIMA, GARCH) ning masinõppetehnikatega (nt LSTM). Signaalide loomine ja kombineerimine, sh tehnilised indikaatorid, faktorimudelid ja sentimendianalüüs. Strateegiate riskihindamine, portfelli optimeerimine ja tootlikkuse mõõdikud.
brief description of the course in English
Fundamentals of algorithmic investing, comparison of market microstructure in traditional and decentralized markets. Use of Python and tools for collecting, cleaning, and visualizing financial and blockchain data. Construction and testing of quantitative strategies (mean reversion, momentum, statistical arbitrage). Time series modeling with traditional statistical methods (ARIMA, GARCH) and machine learning techniques (e.g., LSTM). Creation and combination of signals, including technical indicators, factor models, and sentiment analysis. Strategy risk assessment, portfolio optimization, and performance metrics.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
Õppejõu poolt jagatud teadusartiklikd
Hilpisch, Y. (2020). Python for Algorithmic Trading. O'Reilly Media.
study forms and load
daytime study: weekly hours
3.0
session-based study work load (in a semester):
lectures
1.0
lectures
-
practices
0.0
practices
-
exercises
2.0
exercises
-
lecturer in charge
Tõnn Talpsepp, kaasprofessor (ME - majandusanalüüsi ja rahanduse instituut)
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
Course-teacher pairs of the corresponding version are missing!
Course description in Estonian
Course description in English