course aims in Estonian
Õppeaine eesmärk on tutvustada avastusliku andmeanalüüsi lähenemist tänapäevases andmete rikkas majanduses ning võimalusi suurest hulgast andmetest peidetud mustrite, regulaarsuste, seaduspärasuste ning trendide leidmiseks. Kursus keskendub ärianalüüsile ning andmekaevandamise põhimõistetele, meetodite ning rakenduste selgitamisele ning tasuta või vabavaraliste vahendite peal praktiliste ülesannete lahendamisele.
course aims in English
Goals of this course are to introduce the exploratory data analysis approach in the data rich environment of today’s economy and methods for discovering patterns, regularities, relationships and trends from big datasets. The course focuses on business intelligence and data mining main concepts, methods and applications, complemented with hands-on practical examples using free/freeware software packages.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
* Omab praktilist arusaama klassifitseerimise, otsustuspuude, klasterdamise ning prognoosimise põhimeetoditest, mis on ärianalüüsi ja andmekaevandamise tuumaks;
* Oskab valida õige meetodi vastavalt olukorrale;
* Omab praktilist oskust ärianalüüsi ja andmekaevandamise probleeme defineerida;
* Omab andmekaevandamise tarkvara kasutamise oskust ning oskab tulemusi interpreteerida juhtivtöötajatele kommunikeeritaval viisil.
learning outcomes in the course in Eng.
On completion of the course, the student has:
* Practical understanding of the key methods of classification, decision trees, clustering and prediction that are the core of business intelligence and data mining;
* Ability to decide when to use which approach;
* Practical ability to set the scene and define the problems of business intelligence and data mining;
* Ability to use data mining software and to interpret and communicate the results to the top management level.
brief description of the course in Estonian
Sissejuhatus andmekaevandamisesse (motivatsioon, lihtsamad rakendusnäited, protsess). Andmete ja teadmiste esitamise viisid. Andmete eeltöötlemine. Informatsiooni visualiseerimine. Ärianalüüs, andmekaevandamine, andmelaondus. Klassifitseerimine ja
otsustuspuud. Näidetest õppimine ja arvuline prognoosimine. Klasteranalüüsi meetodid. Evolutsioonilised ning kombineeritud meetodid. Rakendused: kliendikäitumise modelleerimine, finantsandmete analüüs, krediidiriski modelleerimine, täppismeetodid turunduses (segmenteerimine, sihtrühma optimeerimine) ja tootmises. Andmekaevandamise meetodite programmeerimine.
brief description of the course in English
Introduction to Data Mining (Motivation, Examples, Process). Data storage and Knowledge representation. Data pre-processing. Information visualization. Business Intelligence, Data Mining and Data Warehousing. Classification and decision trees. Learning from examples and numerical prediction. Clustering methods. Evolutionary and blending methods. Applications: customer behaviour modelling, analysis of financial data, credit risk models, fine-tuning methods in marketing (segmentation, target group optimization) and production. Implementation (programming) of data mining methods.
type of assessment in Estonian
Saab valida suure hulga iseseisvate ja meeskonnatöö ülesannete seast, punktide summa põhjal kujuneb hinne vastavalt TTÜ standardsele hindamisskaalale.
type of assessment in English
Possibility to choose from a wide range of independent and teamwork assignments, the final total of points is used to grade the course according to TTÜ grading standards.
independent study in Estonian
Praktikumi ülesanded, kodutöö ülesanded
independent study in English
On-site assignments, homework assignments.
study literature
Principles of data mining / David Hand, Heikki Mannila, Padhraic Smyth
Cambridge [Mass.]; London : MIT Press, 2001
Introduction to data mining / Pang-Ning Tan, Michael Steinbach, Vipin Kumar; Boston : Pearson Addison Wesley, 2005
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
practices
2.0
practices
10.0