course aims in Estonian
Aine eesmärk on
- õpetada signaalitöötluse tehnikaid ja rakendusi, mida kasutatakse kommunikatsioonis, mõõtesüsteemides, reaalajas töötavates juhtmimis- ja andmetöötlussüsteemides. Praktiline osa käsitleb signaalitöötluse ülesandeid reaalajas või sellele lähedasi lahendusi.
course aims in English
The aim of this course is to provide knowledge of techniques and applications in signal processing. The main implementation areas are communication, data measurement systems, control and real-time processing system design. The practical part include real-time and semi-real time signal processing tasks.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- saab aru sämplimise, lineraarse filtreerimise ja signaali taastamise toimimisest
- rakendab põhilisi signaalide töötlemise meetodeid aja- ja sageduse vallas
- projekteerib lineaarseid filtreid
- kasutab levinumaid signaalide detekteerimise ja vastuvõtu meetodeid
- rakendab signaalitöötluse algoritme reaalajas töötlemisel
learning outcomes in the course in Eng.
After having successfully passed the course a student:
- is able to understand the effect of sampling, linear filtering and signal reconstruction
- is able to apply basic methods for signal time and frequency domain analysis
- to apply linear filter design techniques
- to use most common signal detection and reception methods
- to implement signal processing algorithms in real-time processing system
brief description of the course in Estonian
Analoog- ja digitaalsignaalid. Analoog-digitaal ja digitaal-analoog muundamine.
Sämplimine ja signaali taastamine. Fourier' teisendused (FFT ja DFT), kompleks- ja reaalosa. Analüüs aja- ja sageduse vallas. Lineaarfiltrid: FIR, IIR, lineaarfiltrite projekteerimine. Filtrite optimeerimine. Signaalide detekteerimine ja moduleerimine.
Signaalitöötluse rakendused sides. Signaalitöötluse algoritmide rakendused signaaliprotsessorites.
brief description of the course in English
Analog and digital signals. Analog to digital conversion. Digital to analog conversion. Sampling and signal reconstruction. Fast Fourier Transform (FFT and DFT) of complex and real data. Time and frequency-domain analysis. Linear filters: FIR and IIR filters, linear filter design techniques. LMS, RLS and Kalman filters. Optimal filtering. Signal detection, estimation and modulation methods. Matched filters and optimal estimation of signal parameters. Uppsampling, downsampling, rate conversion, poly-phase representation, filter banks. Complex envelopes, IQ channels, ambiguity functions. Beamforming and analyzing methods. Wiener Filters for filtering and prediction.
Signal processing application in telecommunication. Implementation of processing algorithms on a DSP-system.
type of assessment in Estonian
Kirjalik eksam.
type of assessment in English
Written exam.
independent study in Estonian
-
independent study in English
-
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):