Signal Processing Methods and Algorithms
BASIC DATA
course listing
A - main register
course code
IEE1710
course title in Estonian
Signaalitöötluse meetodid ja algoritmid
course title in English
Signal Processing Methods and Algorithms
course volume CP
-
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
autumn
language of instruction
Estonian
English
The course is a prerequisite
Applied Signal Processing (IEE1711)
Study programmes that contain the course
Structural units teaching the course
IE - Thomas Johann Seebeck Department of Electronics
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Aine eesmärk on
- õpetada signaalitöötluse teoreetilisi aluseid;
- tutvustada levinumaid signaalitöötluse meetodeid ja algoritme;
- õpetada signaalide esitamise, genereerimise, detekteerimise ja vastuvõtmise meetodeid;
tutvustada stohhastiliste signaalide töötlemise meetodeid ning nende analüüsi ja käsitlemise tehnikaid.
course aims in English
The main aim of the course is to provide the theoretical fundamentals of the signal processing.
Major course aims:
- to teach fundamentals of signal processing
- to introduce the most common signal processing methods and algorithms
- to teach structures of signal representation, generation, detection and reception methods
- to introduce processing methods of random signals and give techniques for analysis and manipulation.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- tunneb erinvaid signaalide esitusviise
- saab aru signaalide analüüsist aja- ja sageduse vallas (i.k. time and frequency domain)
- oskab kirjeldada levinumaid signaalitöötluse meetodeid
- tunneb põhilisi signaalitöötluse algoritme ning oskab selgitada nende rakendusi kommunikatsioonis
learning outcomes in the course in Eng.
After having successfully passed the course a student:
- has understanding of different signal representations
- has understanding of signal time and frequency domain analysis
- is able to describe most common signal processing methods
- is able to identify basic signal processing algorithms and explain their use for the design of communication systems
- is able to analyze and process random signals
- explain the mathematical techniques for design of signal reception
brief description of the course in Estonian
Signaaliallikad: determineeritud ja stohhastilised signaalid. Ajaliselt piiratud ja ajaliselt piiramata analoog- ning digitaalsignaalid. Perioodilised signaalid. Keskväärtus, võimsus, energia. spekter. Signaalide esitus komplekskujul. analüüs aja ja sageduse vallas. Signaalide liitmine, korrutamine ja teisendamine. Signaalide korrelatsioon, ortogonaalsus, konvolutsioon. Tsüklilised signaalid, paaris ja paaritud signaalid. Juhuslikud protsessid. Statistiline signaalitöötlus.
brief description of the course in English
Signal sources: determined signals, random signals. Analog and digital signals with finite and infinite duration. Periodical signals. Average value, power, energy and spectrum. Complex representation of signals. Time and frequency domain analysis. Signal addition, multiplication and transformation. Signal correlation, orthogonality, convolution. Probability function, stationarity, ergodity. Moments. Distributions. Cyclic signals, even and odd signals. Random Processes. Statistical signal processing methods.
type of assessment in Estonian
Kirjalik eksam.
type of assessment in English
Written exam.
independent study in Estonian
-
independent study in English
-
study literature
1. A. D. Poularikas, S. Seely, Signals and Systems, Second Edition
2. T. T. Song. Fundamentals of Probability and Statistics for Engineers
3. S. Miller, D. Childers Probability and Random Processes Second Edition, Academic Press.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
1.0
practices
-
exercises
1.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2022/2023 autumn
Alar Leibak, LT - Department of Cybernetics
English
    display more
    2021/2022 autumn
    Julia Berdnikova, IE - Thomas Johann Seebeck Department of Electronics
    English
      IEE1710_Eval_eng.pdf 
      2020/2021 autumn
      Julia Berdnikova, IE - Thomas Johann Seebeck Department of Electronics
      English
        IEE1710_Eval_eng.pdf 
        2019/2020 autumn
        Julia Berdnikova, IE - Thomas Johann Seebeck Department of Electronics
        English
          IEE1710_Eval_eng.pdf 
          2018/2019 autumn
          Julia Berdnikova, IE - Thomas Johann Seebeck Department of Electronics
          English
            IEE1710_Eval_eng.pdf 
            Course description in Estonian
            Course description in English