Mining Big Data
BASIC DATA
course listing
A - main register
course code
IDN1605
course title in Estonian
Andmekaeve suurandmetest
course title in English
Mining Big Data
course volume CP
-
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
spring
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Introduction to Programming in Python (YFX0500)
The course is a prerequisite
Advanced Course in Nutritional Sciences (LKT9040)
Study programmes that contain the course
code of the study programme version
course compulsory
IABM02/25
no
KATM02/25
no
LAAB17/25
no
TAAM02/25
no
YAFB02/25
yes
display more
Structural units teaching the course
EV - Virumaa College
IT - Department of Software Science
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Õppeaine eesmärgiks on õpetada andmekaeve problemaatikat ja efektiivseid viise suurandmete analüüsiks.
course aims in English
To teach students about data mining and effective techniques for analyzing big data.
learning outcomes in the course in Est.
Kursuse lõpetanu:
Oskab määratleda ja sõnastada andmekaeve probleeme.
Tunneb klassifikatsiooni, regressioonianalüüsi, klasterdamise ja dimensionaalsuse vähendamise meetodeid.
Oskab valida probleemi jaoks sobiva meetodi.
Oskab hinnata andmekaeve mudeli (tulemi) kvaliteeti.
Oskab teisendada andmeid analüüsiks sobivale kujule.
Oskab kasutada andmekaeve tarkvara.
Tunneb erinevaid andmekaeve näiteprobleeme äri- ja füüsiliste süsteemide vallast.
Tunneb suurte andmemahtude haldamise problemaatikat ja tarkvara.
learning outcomes in the course in Eng.
After completing the course, student:
Can define data mining problems.
Knows the methods of classification, regression, clustering and dimensionality reduction.
Can choose appropriate method for a problem.
Can evaluate the quality of the model.
Can transform data into the form appropriate for data mining.
Can use data mining software.
Is familiar with example problems from the fields of business- and physical systems.
Is familiar with the problems and tools for analyzing big data.
brief description of the course in Estonian
Klassifitseerivad mudelid, mis ennustavad objekti klassi. Regressiooni mudelid, mis ennustavad pidevat väärtust. Sarnaste objektide klasterdamine. Dimensionaalsuse vähendamine andmetes. Mudelite valimine ja hindamine. Andmete eeltöötlus. Näiteprobleemid äri- ja füüsiliste süsteemide vallast. Suurte andmemahtude haldamine. Teadusliku Pythoni (SciPy stack) kasutamine andmekaeves.
brief description of the course in English
Classification models predicting the class of an object. Regression models for predicting a continuous-valued variable. Clustering similar objects. Dimensionality reduction for multi-variate data. Choosing and evaluating models. Data pre-processing. Example problems from the fields of business- and physical systems. Managing big data. Using Scientific Python stack for data mining.
type of assessment in Estonian
Hinne pannakse semestri töö (50%) ja iseseisva andmekaeve projekti (50%) alusel.
type of assessment in English
Points for the final grade come from semesters work (50%) and independent data mining project (50%).
independent study in Estonian
Iseseisev töö hõlmab omavalitud andmestiku analüüsi. Tulemused tuleb esitada IPythoni märkmikuna (notebook).
independent study in English
Independent project is a data mining project for a data chosen by the student. Results are presented as IPython notebook.
study literature
Aine koduleht: https://moodle.taltech.ee/course/view.php?id=30058

Raschka, Sebastian. Python machine learning. Birmingham, UK: Packt Publishing, 2015.

Hauck, T. Scikit-learn Cookbook. Birmingham, U.K.: Packt Publishing, 2014.

Witten, Ian H.; Frank, Eibe; Hall, Mark A. Data Mining: Practical Machine Learning Tools and Techniques (3 ed.). Elsevier, 2011.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
2.0
practices
-
exercises
0.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2024/2025 spring
Ants Torim, IT - Department of Software Science
Estonian
    grading_criteria__IDN1605.pdf 
    Avar Pentel, EV - Virumaa College
    Estonian
      grading_criteria__IDN1605.pdf 
      display more
      2023/2024 spring
      Ants Torim, IT - Department of Software Science
      Estonian
        hindamiskriteeriumid_eng.pdf 
        2022/2023 spring
        Ants Torim, IT - Department of Software Science
        Estonian
          Avar Pentel, EV - Virumaa College
          Estonian
            2021/2022 spring
            Avar Pentel, EV - Virumaa College
            Estonian
              grading_criteria__IDN1605.pdf 
              Ants Torim, IT - Department of Software Science
              Estonian
                grading_criteria__IDN1605.pdf 
                2020/2021 spring
                Avar Pentel, EV - Virumaa College
                Estonian
                  grading_criteria__IDN1605.pdf 
                  Ants Torim, IT - Department of Software Science
                  Estonian
                    grading_criteria__IDN1605.pdf 
                    Course description in Estonian
                    Course description in English