course aims in Estonian
Kursuse põhieesmärgiks on anda praktiline sissejuhatus masinõppesse. Kursuse käigus tutvutakse enimlevinud masinõppe algoritmide tööpõhimõtete, omaduste ning kasutusjuhtumitega. Tähelepanu suunatakse algoritmidele, mida saab kasutada küberkaitses, kuigi tutvust tehakse ka teiste algoritmide ja kasutusjuhtumitega. Tudengid peavad kursuse raames arendama masinõppe lahenduse, mis koosneb andmete kogumisest, eeltöötlusest, masinõppe algoritmi valikust ja selle rakendamisest, ning algoritmi täpsuse hindamisest.
course aims in English
The main goal of the course is to give practical introduction to Machine Learning (ML). The course describes the working principles, properties and use cases for the most common Machine Learning algorithms. The emphasis is placed on the algorithms related to cyber security, although other uses and case studies are also introduced. During the course students have to develop a machine learning solution which includes data gathering, pre-processing, choosing and applying suitable ML algorithm, and evaluating the performance of the algorithm.
learning outcomes in the course in Est.
Pärast kursuse läbimist üliõpilane:
- mõistab lihtsamat masinõppega terminoloogiat ning printsiipe;
- omab arusaamist enimlevinud masinõppe algoritmide tööpõhimõtetest;
- teab, milliseid masinõppe algoritme kasutada erinevate probleemide korral;
- on kursis erinevate masinõppe kasutamise võimalustega küberkaitses ;
- teab, kuidas saab kasutada masinõpet küberrünnakutes ning kuidas kaitsta IT-süsteeme selliste rünnakute vastu.
learning outcomes in the course in Eng.
After finishing this course, student:
- understands basic terminology and principles related to machine learning
- has basic understanding of the most common machine learning algorithms
- has an idea which machine learning algorithms can be used for different kinds of problems
- knows the possibilities of using machine learning algorithms in cyber security tasks
- understands how machine learning algorithms can be used in cyber attacks and how to protect IT systems against them
brief description of the course in Estonian
Masinõppe põhitõed - definitsioon, näited, motivatsioon masinõppe kasutamiseks ja masinõppe algoritmide tüübid. Juhendatud õpe – regressiooni algoritmid ja klassifitseerimise algoritmid. Juhendamata õpe rühmitamise algoritmid ja dimensioonide vähendamise algoritmid. Stiimulõpe. Parimat praktikad masinõppes - sobivate algoritmide valimine, tüüpvigade vältimine ja tulemuste hindamine
brief description of the course in English
Basics of machine learning - definition, examples, motivation, algorithm types, supervised and unsupervised learning, reinforcement learning. Supervised learning - regression algorithms and lassification algorithms. Unsupervised learning - clustering algorithms and dimensionality reduction algorithms. Reinforcement Learning. Best practices in machine learning - choosing suitable algorithms, avoiding common mistakes and evaluating results
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
- Drew Conway, John White. Machine Learning for Hackers. O'Reilly, 2012
- Programming Collective Intelligence, Segaran, 2007
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):