Basics of Machine Learning
BASIC DATA
course listing
A - main register
course code
ICM0033
course title in Estonian
Masinõppe alused
course title in English
Basics of Machine Learning
course volume CP
-
ECTS credits
6.00
to be declared
yes
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
Study programmes that contain the course
Structural units teaching the course
IC - IT College
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Aine eesmärk on tutvustada masinõppe olemust ja põhilisi kasutatavaid meetodeid ning arendada oskusi masinõppe algoritmide rakendamisest konkreetse tarkvara baasil.
course aims in English
The aim of this course is to provide participants with an overview of machine learning and principal methods of it, and obtain skills of applying the approach of machine learning, based on specific software.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- teab masinõppe põhimõisteid, -meetodeid ja algoritme;
- hindab masinõppe kasutamise otstarbekust konkreetsete probleemide ja ülesannete lahendamisel ja valib sobilikke masinõppe meetodeid;
- kasutab masinõppe-alast tarkvara konkreetsete probleemide lahendamisel.
learning outcomes in the course in Eng.
After completing the course the student:
- knows the basic terms, methods and algorithms of machine learning,
- evaluates the reasonability of applying machine learning approach in case of particular problems and tasks and selects suitable methods of machine learning;
- masters appropriate machine learning environment by solving particular problems.
brief description of the course in Estonian
Antakse ülevaade masinõppe põhiprintsiipidest, eesmärkidest ja rakendusvaldkondadest. Käsitletakse juhendatud ja juhendamata õpet ning stiimulõpet. Meetoditest ja lähenemisviisidest vaadeldakse otsustuspuid, klasterdamist, regressiooni, klassifitseerimist, närvivõrke, Bayesi meetodeid ning tugivektormasinaid.
brief description of the course in English
The main principles, goals and scope of usage of machine learning is handled. Supervised, unsupervised and reinforcement learning are covered. The most popular methods and approaches - decision trees, regression, classification, clustering, neural networks, bayesian methods and support vector machines are handled.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
- Christopher Bischop. Pattern Recognition and Machine Learning. ISBN-13:
978-0387310732. Springer 2011.
- Zielesny A. From Curve Fitting to Machine Learning: An Illustrative Guide to Scientific Data Analysis and Computational Intelligence. Springer 2018.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
2.0
practices
-
exercises
0.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Toomas Lepikult, IC - IT College
Estonian
    display more
    2024/2025 autumn
    Toomas Lepikult, IC - IT College
    Estonian
      2023/2024 autumn
      Toomas Lepikult, IC - IT College
      Estonian
        2022/2023 autumn
        Toomas Lepikult, IC - IT College
        Estonian
          2020/2021 spring
          Toomas Lepikult, IC - IT College
          Estonian
            2019/2020 spring
            Toomas Lepikult, IC - IT College
            Estonian
              Course description in Estonian
              Course description in English