course aims in Estonian
Aine eesmärk on tutvustada masinõppe olemust ja põhilisi kasutatavaid meetodeid ning arendada oskusi masinõppe algoritmide rakendamisest konkreetse tarkvara baasil.
course aims in English
The aim of this course is to provide participants with an overview of machine learning and principal methods of it, and obtain skills of applying the approach of machine learning, based on specific software.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- teab masinõppe põhimõisteid, -meetodeid ja algoritme;
- hindab masinõppe kasutamise otstarbekust konkreetsete probleemide ja ülesannete lahendamisel ja valib sobilikke masinõppe meetodeid;
- kasutab masinõppe-alast tarkvara konkreetsete probleemide lahendamisel.
learning outcomes in the course in Eng.
After completing the course the student:
- knows the basic terms, methods and algorithms of machine learning,
- evaluates the reasonability of applying machine learning approach in case of particular problems and tasks and selects suitable methods of machine learning;
- masters appropriate machine learning environment by solving particular problems.
brief description of the course in Estonian
Antakse ülevaade masinõppe põhiprintsiipidest, eesmärkidest ja rakendusvaldkondadest. Käsitletakse juhendatud ja juhendamata õpet ning stiimulõpet. Meetoditest ja lähenemisviisidest vaadeldakse otsustuspuid, klasterdamist, regressiooni, klassifitseerimist, närvivõrke, Bayesi meetodeid ning tugivektormasinaid.
brief description of the course in English
The main principles, goals and scope of usage of machine learning is handled. Supervised, unsupervised and reinforcement learning are covered. The most popular methods and approaches - decision trees, regression, classification, clustering, neural networks, bayesian methods and support vector machines are handled.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
- Christopher Bischop. Pattern Recognition and Machine Learning. ISBN-13:
978-0387310732. Springer 2011.
- Zielesny A. From Curve Fitting to Machine Learning: An Illustrative Guide to Scientific Data Analysis and Computational Intelligence. Springer 2018.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):