Data Science and Machine Learning
BASIC DATA
course listing
A - main register
course code
EVR0350
course title in Estonian
Andmeteadus ja masinõpe
course title in English
Data Science and Machine Learning
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Graded assessment
teaching semester
autumn - spring
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
Data Analysis (RAM0580)
Study programmes that contain the course
code of the study programme version
course compulsory
EDTR17/25
no
Structural units teaching the course
EV - Virumaa College
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Kursuse eesmärk on omandada teadmised andmeteaduse ja masinõppe baasmeetoditest ja -algoritmidest ning kujundada oskused lihtsamate andmeteaduse ja masinõppe meetodite rakendamiseks.
course aims in English
The aim of the course is to acquire knowledge of the most common data science and machine learning methods and algorithms, as well as to form skills for simple data science and machine learning methods applying.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- mõistab andmeteaduse ja masinõppe põhiterminoloogiat ning põhiprintsiipe;
- omab teadmisi andmeteaduse ja masinõppe baasmeetoditest ja -algoritmidest;
- määratleb ja sõnastab andmeteaduse ning masinõppe probleeme;
- valib ja rakendab probleemist lähtuvalt sobivaid andmeteaduse ning masinõppe meetodeid;
- teisendab andmeid analüüsiks sobivale kujule ja hindab, tõlgendab neid ning vormistab saadud analüüsi tulemused esitluseks;
- kasutab andmeteaduse ja masinõppe tarkvara.
learning outcomes in the course in Eng.
After completing this course, the student:
- understands basic terminology and principles related to data science and machine learning;
- knows the most common data science and machine learning methods and algorithms;
- defines and formulates data science and machine learning problems;
- selects and applies appropriate data science and machine learning methods based on the problem;
- transforms data into the form appropriate for analysis and evaluates, interprets and presents the results of the analysis;
- uses data science and machine learning software.
brief description of the course in Estonian
Kursus käsitleb andmeteaduse ja masinõppe põhiprintsiipe, algoritme ja mudeleid (andmete esmane analüüs ja visualiseerimine, sagedaste mustrite otsimine, lineaarregressioon, klassifitseerimine, otsustuspuud, logistiline regressioon, tekstianalüüs, aegridade analüüs jne) ning ka sobivate algoritmide valimise ja tulemuste hindamise ülesandeid. Õppeaine koosneb loengutest ning praktikumidest, kus õpitakse lahendama praktilise sisuga ülesandeid vastava tarkvara abil. Kursust õpetatakse rühmaprojekti kaudu, mis arendab õppijate meeskonnatöö oskusi ning ka andmete analüüsimise, järelduste tegemise ja tulemuste esitamise oskusi.
brief description of the course in English
The course covers the main principles, algorithms and models of data science and machine learning (exploratory data analysis and visualization, frequent pattern mining, linear regression, classification, decision trees, logistic regression, text analysis, time series analysis, etc.). Also aspects of choosing suitable algorithms and evaluating results will be covered. The course consists of lectures and practicums, where the practical tasks solving with the help of corresponding software is taught. The course is taught through a group project that develops learners' skills in analysing data, drawing conclusions, presenting results and working in teams.
type of assessment in Estonian
eristav hindamine
type of assessment in English
graded assesment
independent study in Estonian
-
independent study in English
-
study literature
Flach, P. Machine learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, 2012
Steven S. Skiena, The Data Science Design Manual, Springer, 2017
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
1.0
lectures
4.0
practices
3.0
practices
20.0
exercises
0.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2025/2026 autumn
Avar Pentel, EV - Virumaa College
Estonian
    display more
    2024/2025 autumn
    Olga Dunajeva, EV - Virumaa College
    Estonian
      Course description in Estonian
      Course description in English