Analysis and Visualization of Industrial Data
BASIC DATA
course listing
A - main register
course code
EVM0370
course title in Estonian
Tööstusandmete analüüs ja visualiseerimine
course title in English
Analysis and Visualization of Industrial Data
course volume CP
-
ECTS credits
9.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
RATM24/25
yes
Structural units teaching the course
EV - Virumaa College
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Õppeaine eesmärk on:
- anda teadmised andmeanalüüsi, masinõppe ja andmekaeve meetodite rakendamisest tänapäevases tööstuses ning oskusi suurest hulgast andmetest peidetud mustrite, regulaarsuste, seaduspärasuste ning trendide leidmiseks;
- tutvustada andmete visualiseerimise põhiprintsiipe;
- arendada oskused sobivate meetodite valikuks ja rakendamiseks, et näidata andmete sisemist struktuuri ja teha otsuseid.
course aims in English
The aim of this course is to:
- provide knowledge on applying data analysis, machine learning, and data mining methods in modern industry and skills to discover hidden patterns, regularities, relationships, and trends in large datasets;
- introduce the fundamental principles of data visualization;
- develop skills for choosing and applying appropriate methods to discover the internal structure of data and make decisions.
learning outcomes in the course in Est.
Aine läbinud üliõpilane:
- eristab laia valikut andmeanalüüsi, andmete visualiseerimise, masinõppe ja andmekaeve meetodeid ning tunneb nende rakendusvõimalusi;
- teab hea visualisatsiooni omadusi;
- oskab välja pakkuda tööstusandmete analüüsimise uurimisprobleemi;
- oskab valida sobivad meetodid tööstusandmete visualiseerimiseks ja analüüsimiseks ning oskab andmeanalüüsi tulemusi hinnata ja interpreteerida;
- oskab kasutada vastavat tarkvara.
learning outcomes in the course in Eng.
After completing this course, the student:
- differentiates between a wide variety of data analysis, data visualization, machine learning, and data mining methods and knows their application possibilities;
- understands the features of good visualization;
- can propose a research problem for industrial data analysis;
- can choose appropriate methods for visualizing and analyzing industrial data, as well as evaluate and interpret the results of data analysis;
- is able to use relevant software.
brief description of the course in Estonian
Kursus annab teadmisi ja oskusi, et mõista, kavandada, kasutada ja hallata kaasaegseid andmeanalüüse ning andmete visualiseerimise, masinõppe ja andmekaevandamise lahendusi tööstusprobleemide lahendamiseks. Kursusel õpetatakse erinevate andmeanalüüside, andmete visualiseerimise, masinõppe ning andmekaeve meetodite ja algoritmide kasutamist ja põhimõtteid ning nende rakendamise tööriistu. Samuti käsitletakse tulemuste valideerimist ja tõlgendamist.
brief description of the course in English
The course provides knowledge and skills to understand, design, use, and manage modern data analysis, data visualization, machine learning, and data mining solutions for solving industrial problems. The course teaches the use and principles of various data analysis, data visualization, machine learning, and data mining methods and algorithms, as well as their application tools. Validation and interpretation of results are also covered.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
1. James, G., Witten, D., Hastie, T. & Tibshirani, R. (2021). An Introduction to Statistical Learning with Applications in R. Second Edition. Springer.
2. Cole Nussbaumer Knaflic, „Storytelling with Data“
3. Cole Nussbaumer Knaflic , „Storytelling with Data: Let's Practice!“
4. Loengukonspekt ja abimaterjalid asuvad Moodle'is.
study forms and load
daytime study: weekly hours
6.0
session-based study work load (in a semester):
lectures
2.0
lectures
16.0
practices
4.0
practices
32.0
exercises
0.0
exercises
0.0
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2024/2025 spring
Olga Dunajeva, EV - Virumaa College
Estonian
    Course description in Estonian
    Course description in English