Data in Supply Chains and Mobility Systems
BASIC DATA
course listing
A - main register
course code
EML0180
course title in Estonian
Andmed tarneahelates ja liikuvuses
course title in English
Data in Supply Chains and Mobility Systems
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
spring
language of instruction
Estonian
English
Study programmes that contain the course
code of the study programme version
course compulsory
EALM02/25
yes
Structural units teaching the course
EM - Department of Mechanical and Industrial Engineering
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Aine eesmärk on anda ülevaade andmete olemusest ja rollist eri tarneahelates ja liikuvussüsteemides nende tõhususe tõstmisel teoorias ja praktikas.
course aims in English
The aim of this course is to provide an overview of the nature and role of data in different supply chains and mobility systems to improve their efficiency in theory and practice.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- läheneb ettevõtte IKT probleemi lahendamisele strateegiliselt ja terviklikult;
- oskab suhelda IT teenuse pakkujaga ja tellida sellelt poolelt lähteülesannet;
- eristab ja valib ettevõtte vajadusest tulenevalt olulisi ning mitteolulisi andmeid;
- omab teoreetilist ja praktilist arusaamist tehnoloogiatest ITK alaste valikute tegemiseks;
- analüüsib ja visualiseerib andmeid tarneahelates ning liikuvussüsteemides, kasutades kaasaegseid andmeanalüüsi tööriistu;
- mõistab ja oskab rakendada küberturvalisuse põhimõtteid andmete käitlemisel tarneahelates ja liikuvuses;
- kavandab ja viib läbi simulatsioone tarneahela ning liikuvussüsteemide protsesside optimeerimiseks;
- hindab kriitiliselt eri andmepõhiste tehnoloogiate rakendatavust ning mõju tarneahelates ja liikuvussüsteemides;
- koostab andmepõhiseid strateegiaid digitaliseerimise edendamiseks tarneahelates ja liikuvuses;
- rakendab teadmisi andmestandarditest ja andmevahetuse protokollidest tarneahelate ning liikuvuse kontekstis.
learning outcomes in the course in Eng.
After completing this course the student:
- approaches solving a company’s ICT problem strategically and holistically;
- is able to communicate with IT service providers and order project specifications from them;
- can distinguish between and select critical and non-critical data based on the company’s needs;
- possesses theoretical and practical understanding of technologies for making ICT-related decisions;
- analyzes and visualizes data in supply chains and mobility systems using modern data analysis tools;
- understands and can apply cybersecurity principles in handling data within supply chains and mobility systems;
- designs and conducts simulations for optimizing processes in supply chain and mobility systems;
- critically assesses the applicability and impact of various data-driven technologies in supply chains and mobility systems;
- develops data-driven strategies to promote digitalization in supply chains and mobility;
- applies knowledge of data standards and data exchange protocols in the context of supply chains and mobility.
brief description of the course in Estonian
Digitaliseerimise ülesanne ja etapid tarneahelates ja liikuvuses. Andmete olemus. Andmekaitse ja andmete usaldusväärsus. Andmepõhised tehnoloogiad liikuvuses ja tarneahelates: andurid, sensorid, autonoomsed lahendused, targad sadamad; GPS andmed ja seadmed; ajade interneti (IoT) rakendused ja tehnoloogiad; RFID tehnoloogia, tehisintellekti (AI) tehnoloogiad ja rakendused planeerimisel ja optimeerimisel; äriprotsesside haldamine ja ERP-süsteemid. Andmestandardid. Andmebaasisüsteemid. Andmetöötluse vahendid ja keeled. Suurandmed ja andmekaeve tarneahelates ja liikuvuses. Andmete masinloetavus. Andmete mõistmine ja prognoosimine, andmete talletamine. Andmeanalüüs, tulemuste interpreteerimine, infosüsteemi loomune. Pilvepõhised lahendused. Andmete valideerimine. Küberturvalisuse meetmed ja suunised. Simulatsioonide(mudelite) kasutamine tarneahela erinevates etappides ja liikuvuses. Automaatne andmevahetus ja EDI. Ruumiandmete analüüs ja visualiseerimine. Protsesside kaardistamine ja modelleerimine.
brief description of the course in English
The task and stages of digitalization in supply chains and mobility. The nature of data. Data protection and reliability. Data-driven technologies in mobility and supply chains: sensors, autonomous solutions, smart ports; GPS data and devices; Internet of Things (IoT) applications and technologies; RFID technology, artificial intelligence (AI) technologies and applications in planning and optimization; business process management and ERP systems. Data standards. Database systems. Data processing tools and languages. Big data and data mining in supply chains and mobility. Machine-readable data. Data understanding and forecasting, data storage. Data analysis, interpretation of results, and the nature of information systems. Cloud-based solutions. Data validation. Cybersecurity measures and guidelines. Use of simulations (models) in various stages of the supply chain and mobility. Automated data exchange and EDI. Spatial data analysis and visualization. Process mapping and modeling.
type of assessment in Estonian
Erisatv hindamine (eksam)
type of assessment in English
Differentiated Assessment - Exam
independent study in Estonian
Töö õppematerjalidega MOODLE keskkonnas. Seminaritöö etapiline tegemine ning selle vahetulemuste esitlemine. Õppejõudude poolt jaotatavad ülesanded ja kaasused.
independent study in English
Working with study materials in the MOODLE environment. Step-by-step completion of the seminar paper and presentation of its interim results. Tasks and case studies assigned by the instructors.
study literature
1. Ruumiliste loodusandmete statistiline analüüs : õpik-käsiraamat
2. (https://www.digar.ee/arhiiv/nlib-digar:120450)
3. McKinney, W. (2012) Python for Data Analysis: Data wrangling with Pandas, NumPy and iPython, First edition. O´Reilly Media.
4. Data Science for Supply Chain Forecasting Nicolas Vandeput De Gruyter, 2021
5. Computer security : principles and practice / William Stallings, Lawrie Brown, University of New South Wales, Australian Defence Force Academy.
6. Supply Chain Digital (ajakiri): https://supplychaindigital.com/
7. MIT Center for Transportation & Logistics: https://ctl.mit.edu/
8. Kaggle - Supply Chain datasets: https://www.kaggle.com/datasets?search=supply+chain
9. IBM Developer - Supply Chain Analytics: https://developer.ibm.com/technologies/analytics/
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
1.0
practices
-
exercises
1.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
2024/2025 spring
Tanel Jairus, EM - Department of Mechanical and Industrial Engineering
Estonian
    Course description in Estonian
    Course description in English