course aims in Estonian
• Kujundada üliõpilastes süsteemset, teaduslikule alusele tuginevat maailmapilti ja saavutada, et kinnistuksid säästliku energeetika põhilised alusteadmised;
• Anda üliõpilastele vajalikud alusteadmised säästliku energeetika materjalidest ning protsessidest;
• Anda tudengitele ülevaade säästliku energeetika protsesside toimimise ning nendega seotud materjalide saamise termodünaamilistest alustest.
course aims in English
• To develop systematic, based on scientific fundament world view and achieve that the base knowledge of sustainable energetics is converted to constant awareness of students;
• To familiarize students with fundamentals of creation and action of materials and processes of sustainable energetics
• To provide students with an overview of thermodynamic fundamentals of planning and operation of processes in sustainable energetics and related materials production.
learning outcomes in the course in Est.
Üliõpilased tunnevad säästliku energeetika põhiprotsesside termodünaamilisi aluseid ning toimimise põhiprintsiipe ning nendega seotud materjale;
Üliõpilased suudavad kirjeldada ja analüüsida erinevate energia saamisega seotud protsesside termodünaamilisi seoseid ümbritseva keskkonnaga, näha nende protsesside mõju keskkonnale ning analüüsida protsesse jätkusuutlikkuse, keskkonnasõbralikkuse ning efektiivsuse osas.
learning outcomes in the course in Eng.
Students are aware of thermodynamic fundamentals and basic principles of processes in sustainable energetics and related materials;
Students are able to describe and analyze thermodynamic connections of energetic processes with the surrounding environment both in view of the environment as well as in that of the sustainable and environmental-friendly action and efficiency of these processes.
brief description of the course in Estonian
Termodünaamika põhimõisted. Energia, entroopia ja eksergia. Keemiline termodünaamika. Inseneritermodünaamika alused. Termodünaamilised süsteemid. Põhilised jäävusseadused. Termodünaamilised omadused, olekud, olekuparameetrid, protsessid, tsüklid. Termodünaamilised funktsiooonid. Tasakaalsed ja kvaasitasakaalsed protsessid;
Termodünaamiliste olekuparameetrite seosed. Olekufunktsioonid. Sagedamini kasutatavad termodünaamilised omadused. Ideaalgaaside omadused ja reaalgaaside omadused. Levinumad diagrammid termodünaamikas. Gaaside segud. Tahkised ja vedelikud. Kahekomponendilised süsteemid;
Massi jäävus termodünaamilises süsteemis. Reageerivad süsteemid. Põlemisreaktsioonide termodünaamika ja arvutused;
Energia. Energia jäävus ja energia ülekanne. Makroskoopilised ja mikroskoopilised energiavood süsteemides. Soojus ja töö. Temperatuur. Soojusülekanne. Termodünaamika esimene seadus. Termodünaamika teine seadus ja selle järeldused. Kelvin-Plancki avaldus. Pööratavad ja mittepööratavad protsessid. Clausiuse definitsioon. Termodünaamiline tasakaal. Püsiva voo seadmed. Energiatootmise süsteemid. Soojatootmis- ja jahutussüsteemid. Kiirguse energia ja päikeseenergeetika süsteemid;
Pöördumatute protsesside termodünaamika. Protsesside sidusus.
brief description of the course in English
Thermodynamics – main concepts. Energy, Entropy and Exergy. Chemical Thermodynamics. Subjects of engineering thermodynamics. Concept of the thermodynamic system and control volumes, the fundamental conservation principles, thermodynamic properties, states, state functions, processes and cycles. Thermodynamic functions. Equilibrium and quasi-equilibrium processes;
Thermodynamic properties, property relationships and processes. Basic terms and concepts. Frequently used thermodynamic properties. Ideal gas properties. Non-ideal gas properties. Solids. Ideal- gas mixtures. Two-component systems. Main diagrams in thermodynamics;
Conservation of mass. Mass conservation for the thermodynamic system. Reacting systems. Thermodynamics of combustion reactions;
Energy. Conservation of energy and energy transfer. Macroscopic and microscopic energies processed by systems. Heat and work. Temperature. Heat transfer. The first law. Second law of thermodynamics and some of its consequences. Kelvin-Planck statement. Reversible and irreversible processes. Clausius definition. Thermodynamic equilibrium. Steady- flow devices. Systems for power production, propulsion and heating and cooling. Radiation energy and solar energy systems;
Basics of irreversible thermodynamics. Coupled systems.
type of assessment in Estonian
Eksamile pääsemise eelduseks on kodutöö arvestamine ning kontrolltööde sooritamine vähemalt miinimumhindele (50%).
Hinne kujuneb kirjaliku eksami ja kontrolltööde tulemuste summana.
Vaata: EKM1600 Termodünaamika hindamiskriteeriumid.
type of assessment in English
Premise for exam requires accounted homework and minimum 50% result from the Quizzes.
Final grade consists of the summary result of written exam and Quizzes.
See: EKM1600 Thermodynamics assessment criterion
independent study in Estonian
Iseseisva töö eesmärgiks on kinnistada auditoorselt läbivõetud materjal ja omandada vilumused termodünaamika ainega seotud arvutuste sooritamiseks
Iseseisva töö sisu:
• Kodutöö tasakaaluarvutuste teemal;
• Testid e-õppes;
• Ettevalmistus eksamiks.
independent study in English
The aim of independent work is to embed the material obtained during contact hours and acquire skills to perform different calculations related to thermodynamics;
Content of independent work:
• Homework on equilibrium calculations;
• Tests in Moodle;
• Preparation for the exam.
study literature
1. Lecture materials: http://moodle.taltech.ee
2. S.R.Turns. Thermodynamics. Concepts and Applications. Cambridge University Press, 2006.
3. R.T. Balmer. Modern Engineering Thermodynamics. Elsevier, 2011.
4. P.Atkins, J. de Paula. Physical Chemistry. 10th ed. Oxford University Press 2014
.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):