Quantum Mechanics of Materials and Molecules
BASIC DATA
course listing
A - main register
course code
EIS0180
course title in Estonian
Materjalide ja molekulide kvantmehaanika
course title in English
Quantum Mechanics of Materials and Molecules
course volume CP
-
ECTS credits
6.00
to be declared
yes
fully online course
not
assessment form
Examination
teaching semester
autumn - spring
language of instruction
Estonian
English
Prerequisite(s)
Prerequisite 1
General Chemistry (YKI0150)
Study programmes that contain the course
code of the study programme version
course compulsory
EACB17/25
no
Structural units teaching the course
EI - Department of Energy Technology
Course description link
Timetable link
View the timetable
Version:
VERSION SPECIFIC DATA
course aims in Estonian
Õppeaine eesmärk on:
- tutvustada kvantmehaanikat ja tema tööriistu;
- luua seosed kvantmaailma ja kaasaegsete materjalide vahel, nt laserid, päikesepatareid jne;
- aidata meile teada molekule ja nende omadusi ja spektreid lahti mõtestada läbi kvantmaailma vaatenurga;
- anda õppurile esmased tööriistad ja sõnavara kvantmaailma mõistmiseks.
- luua alused kvantmehaanika põhjalikumaks õppimiseks edasises töös.
course aims in English
The aim of this course is to:
- familiarise with quantum mechanics and the tools of quantum mechanics;
- see the connections between the quantum world and modern materials like lasers, solar panels, etc.;
- interpret the properties of known molecules and their spectra via the quantum mechanics viewpoint;
- give students the basic tools and the terminology of quantum mechanics;
- form the bases for more in-depth study of quantum mechanics and -physics in the future.
learning outcomes in the course in Est.
Õppeaine läbinud üliõpilane:
- mõistab igapäevaste materjaliteaduse ja keemia küsimuste seotust kvantmehaanikaga;
- omab ettekujutust kvantmehhaanika olemusest ja tööriistadest;
- kasutab materjalide, keemia ja molekulide kirjeldamiseks peamiseid kvantmehaanika tööriistu;
- tunneb elementaarset sõnavara ja vahendeid edaspidises elus detailsemaks kvantmehaanika õppimiseks.
learning outcomes in the course in Eng.
After completing this course, the student:
- understands the links between everyday material science and chemistry with quantum mechanics;
- recognizes the basic nature of quantum mechanics and its tools;
- can use the essential quantum mechanical tools for describing materials, chemistry and molecules;
- is familiar with the basic vocabulary and tools to allow a more in-depth study of quantum mechanics in the future.
brief description of the course in Estonian
Kvantmehaanika võib esimese hooga jätta mulje kui väga keerulisest matemaatilisest teooriast, mistõttu võib isegi esimeste kvantmaailma tõdede mõistmine keemikutele, materjaliteadlastele ja inseneridele olla raske ja hirmuäratav. Ometi on kvantmehaanika oluliseks aluseks paljudele kaasaegsetele materjalidele ja tehnoloogiatele, mille arendamist ja toimimist ei ole muude meetoditega võimalik korralikult avada.
Õppeaine eesmärk on kvantmehaanika demüstifitseerida ja kirjeldada kvantmehaanika põhitõdesid, tuues matemaatilist formalismi sisse täpselt niipalju kui seda minimaalselt vaja on. Läheneme kvantmehaanika alustele läbi makromaailmast tundud materjalide ja fenomenide, nt laserid, päikesepatareid, aatomite ja molekulide spektrid. Loome seosed kvantmehaanika põhitõdede ning meile teada praktiliste nähtuste vahel, et anda sissejuhatus kvantmaailma ning alusteadmised huvi ja vajaduse korral kvantmehaanika ja kvantkeemia süvitsi õppimiseks.
Õppeaine eelduseks on esimeste aluskeemia ja materjaliteaduse tõdede tundmine, nt baasteadmised molekulidest, keemilistest sidemetest ja orbitaalidest. Liigume kvantmehaanika tööriistade mõistmiseni mitte alustades matemaatikast, vaid hoopis läbi füüsikalis-keemilistest nähtuste. Minimaalsete eelduste pealt alustades jõuame oluliste tööriistade ja põhimõteteni, nagu lainefunktsioonid, hamiltoniaan, Schrödingeri võrrand jne. Arvestades kvantmaterjalide olulisust tänapäeva tehnoloogias, on see oluline osa alusteadmistest uute materjalide ja protsesside loomisel ning optimeerimisel.

brief description of the course in English
Quantum mechanics may, at the first glance seem like an extremely complicated mathematical theory, that is very difficult for chemists, material scientists and engineers. Yet, quantum mechanics is an essential tool for understanding of various modern materials and technologies, which cannot be developed and enhanced without it.
The aim of this course is to demystify quantum mechanics and to describe its basic tools by introducing mathematical formalism only as much as is fundamentally unavoidable. We will approach the quantum world through familiar phenomena from the familiar macro world, e.g., lasers, solar panels, spectra of simple molecules, etc. We will build the connection between the basic principles of quantum mechanics and familiar practical phenomena to make the first steps in the quantum world and give the basic tools and understanding to for further in-depth study of quantum mechanics and-chemistry in the future.
The course assumes an understanding of basic chemistry and materials science, such as basic knowledge about molecules, chemical bonds and orbitals. We will approach the quantum world not from mathematics, but from familiar physical-chemical phenomena. Starting from such minimal assumptions, we will reach the fundamental quantum mechanical tools and principles like wave functions, the Hamiltonian, the Schrödinger equation, etc. Considering the importance of quantum materials in modern technology, it is an essential ingredient of the toolbox for developing and optimizing novel materials and processes.
type of assessment in Estonian
Eristav hindamine
type of assessment in English
Graded evaluation
independent study in Estonian
-
independent study in English
-
study literature
1. Quantum Mechanics for Chemists, David O Hayward, ‎ Royal Society of Chemistry, 2002;
2. An Introduction to Quantum Physics: A First Course for Physicists, Chemists, Materials Scientists, and Engineers, Stefanos Trachanas, Wiley-VCH, 2018.
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):
lectures
2.0
lectures
-
practices
0.0
practices
-
exercises
2.0
exercises
-
lecturer in charge
-
LECTURER SYLLABUS INFO
semester of studies
teaching lecturer / unit
language of instruction
Extended syllabus
Course-teacher pairs of the corresponding version are missing!
Course description in Estonian
Course description in English