course aims in Estonian
1. Luua eeldused elektrisüsteemi olekudünaamikaga seotud põhimõtete ja probleemide mõistmiseks.
2. Luua võimalus teadmiste omandamiseks mõistmaks ja analüüsimaks elektrisüsteemi stabiilsust mõjutavaid tegureid ja stabiilsuse kindlustamise meetodeid.
3. Luua võimalus teadmiste omandamiseks elektrisüsteemi komponentide modelleerimisest dünaamikaarvutustes.
course aims in English
1. To create assumptions to understand processes, principles and problems related to power system dynamics.
2. To create possibilities to understand and analyse factors influensing power system stability and methods for securing power system stability.
3. To create possibility to obtain knowledge on power system components modelling principles for network dynamic calculations.
learning outcomes in the course in Est.
- Mõistab ja arvutab elektrisüsteemi staatilist ja dünaamilist stabiilsust lihtsaima elektrisüsteemi näitel.
- Kirjeldab ja analüüsib sünkroonmasinate põhiseoseid lähtuvalt elektrisüsteemi stabiilsusest.
- Mõistab ja analüüsib elektrisüsteemi dünaamikat kirjeldavaid diferentsiaalvõrrandeid.
- Mõistab ja teostab elektrisüsteemi staatilise stabiilsuse määramist diferentsiaalvõrrandite alusel.
- Kirjeldab ja analüüsib elektrisüsteemi stabiilsust mõjutavaid seadmete ehitust ja funktsioone (sünkroonmasinate ergutussüsteemid, turbiinide kiirusregulaatorid, ülekandeseadmed, elektrisüsteemi koormus, jõuelektroonikaseadmed).
- Mõistab ja analüüsib elektrisüsteemi talitluse reguleerimise meetodeid lähtuvalt elektrisüsteemi stabiiluse tingimustest.
- Kirjeldab ja analüüsib elektrisüsteemi nurga- ja pingestabiilsuse olemust ja määramise võtteid.
- Kirjeldab ja analüüsib elektrisüsteemi stabiilsuse teisi probleeme (alasünkroonresonants, sageduse stabiilsus, süsteemidevaheline võnkumine, elektri hajutatud genereerimise mõju).
- Mõistab ja kirjeldab elektrisüsteemi töökindluse tagamise meetodeid.
- Modelleerib elektrisüsteemi ja analüüsib selle dünaamilist talitlust.
learning outcomes in the course in Eng.
- Understand and calculate power system angle and transient stabiltiy based on simple power system example.
- Describe and analyze the principles of synchronous machines control and technical performance in respect to power system stability.
- Understand and analyse differential equations describing power system dynamics.
- Understand and determine power system angle stability using differential equations.
- Describe and analyze the design and functions of the devices (synchronous machine excitation systems, turbine governors, transmission equipment, load, power electronic devices) influencing power system stability.
- Understand and analyze methods for power system control enhancement in respect to power system stability.
- Describe and analyze the principles and methods on angle stability and voltage stability.
- Describe and analyse other power system stability related aspects, e.g. subsynchronous resonance, frequency stability, inter-area oscillations, effect of distributed generation.
- Understand and describes methods for power system security enhancement.
- Model the power system and analyze its dynamic operation.
brief description of the course in Estonian
Energiasüsteemide olekudünaamika põhimõisted. Nurkkarakteristik. Staatilise ja dünaamilise stabiilsuse mõiste. Sünkroonmasinate põhiseosed. Staatiline stabiilsus lihtsustatud käsitluses. Ergutuse automaatreguleerimise, skeemiparameetrite ja tarbijate mõju. Koormuse stabiilsus. Dünaamiline stabiilsus. Generaatori rootori liikumise diferentsiaalvõrrand. Koormuse dünaamiline stabiilsus. Resulteeruv stabiilsus. Staatiline stabiilsus ranges käsitluses, matemaatiline kriteerium. Routh-Hurwitzi kriteerium. Sagedusmeetodid. Stabiilsuse tagamise praktilised küsimused.
brief description of the course in English
Main principles of power system stability and dynamics. Load angle characteristic. Principles of angle and transient stability. Main principles of synchronous machines and converter based units. Simplified approach to angle stability. Influence of synchronous maching excitation system automatic control, network parameters and load. Load stability. Transient stability. Swing equation. Load dynamic stability. Transient stability. Angle stability. Routh-Hurwitz criterion. Frequency domain approach. Practical questions on securing power system stability.
type of assessment in Estonian
-
type of assessment in English
-
independent study in Estonian
-
independent study in English
-
study literature
1.Meldorf,M., Kilter, J. Elektrisüsteemi stabiilsus. Tallinn 2011, 346 lk.
2.Meldorf,M. jt. Jaotusvõrgud. Tallinn. 2007. 546 lk.
3.Kundur,P.Power System Stability and Control.McGraw-Hill,1994,1176 pp.
4.Taylor,C.W.Power System Voltage Stability.McGraw-Hill,1994,
study forms and load
daytime study: weekly hours
4.0
session-based study work load (in a semester):