Maa süsteemide numbrilise modelleerimise alused (NSO8001)
PÕHIANDMED
õppeaine register
A - põhiregister
õppeaine kood
NSO8001
õppeaine nimetus eesti k
Maa süsteemide numbrilise modelleerimise alused
õppeaine nimetus inglise k
Fundamentals of the Earth System Modelling
õppeaine maht AP
-
õppeaine maht EAP
3.00
deklareeritav
jah
õppeaine täies mahus läbitav e-õppes
ei
kontrollivorm
eksam
õpetamise semester
sügis
õppekeel
eesti keel
inglise keel
Õppekavad, millesse aine kuulub
kavaversiooni kood
aine kohustuslik
LARM18/25
ei
Ainet õpetavad struktuuriüksused
LM - meresüsteemide instituut
Ainekaardi link
Tunniplaani link
Vaata tunniplaani
Versioon:
VERSIOONIPÕHISED ANDMED
õppeaine eesmärgid eesti k
Õppeaine eesmärk on luua tingimused teadmiste omandamiseks Maa süsteemide numbriliste mudelite ülesehitusest, numbrilistest lahendusmeetoditest ja erinevatest mudeli tüüpidest ning kinnistada oskused töötamiseks numbriliste mudelitega.
õppeaine eesmärgid inglise k
The aim of this course is to create conditions for acquiring knowledge about the structure of numerical models of Earth systems, numerical solution methods and different types of models, and consolidate skills for working with numerical models.
õppeaine õpiväljundid eesti k.
Õppeaine läbinud üliõpilane:
- kasutab numbrilise modelleerimise tehnikat üldiselt ja NEMO ookeani mudelit algtasemel;
- võrdleb Maa süsteemide uuringuteks kasutatavaid eri tüüpi numbrilisi mudeleid.
õppeaine õpiväljundid ingl k.
After completing this course, the student:
- uses numerical modeling techniques in general and the NEMO ocean model at the basic level;
- compares different types of numerical models used for Earth system studies.
õppeaine sisu lühikirjeldus eesti k
Kursus keskendub Maa süsteemide numbriliste mudelite kasutamisele. Loengute käigus käsitletakse osatuletistega diferentsiaalvõrrandite lahendamist, kasutades lõplike vahede meetodeid, numbrilist stabiilsust, koonduvust, täpsust ja numbriliste lähenduste vigu. Detailselt analüüsitakse NEMO modelleerimise raamistiku ülesehitust, numbrilist rakendust ja lahendatakse praktilisi modelleerimisülesandeid. Kursuse käigus tutvustatakse andmete assimileerimise printsiipe ja meetodeid. Selgitatakse mudelite ansambli kasutamist tänapäeva Maa süsteemide rakendustes. Kursuse käigus tutvustatakse erinevaid kasutatavaid Maa süsteemide mudelite tüüpe.
õppeaine sisu lühikirjeldus ingl k
The course focuses on the use of numerical Earth system models. During the lectures, the solution of differential equations with partial derivatives using finite difference methods, numerical stability, convergence, accuracy and errors of numerical approximations are discussed. The structure of the NEMO modeling framework, its numerical implementation, and practical modeling tasks are analyzed in detail. During the course, the principles of data assimilation and different methods are introduced. The use of ensemble models in modern Earth system applications is explained. During the course, different types of Earth system models are introduced.
hindamisviis eesti k
Suuline eksam
hindamisviis ingl k
Oral exam
iseseisev töö eesti k
Üliõpilane lahendab füüsikalise okeanograafia ülesande kasutades NEMO füüsika numbrilist mudelit. Selleks on vajalik läbi töötada NEMO mudeli kirjeldus ja kasutajajuhend. Praktiline tegevus sisaldab NEMO mudelkoodi alla laadimise, kompileerimise klasterarvutil ja testülesande töölepaneku. Teise etapina tuleb mudeli namelist-faili muuta vastavalt püstitatud ülesandele, ettevalmistada mudeli sisend ja väljund ning läbi viia arvutused. Arvutustulemused tuleb analüüsida püstitatud ülesande kontekstis ning valmistada ette ettekanne vastavalt teadusliku ettekande ülesehitusele.
iseseisev töö ingl k
A student will solves a problem in physical oceanography using NEMO circulation model. It requires reading NEMO model description and user’s manual. In practice, a student has to download model code, compile it on cluster machine and run a simple test case. Further on, a student has to change namelist file according to the problem, prepare model input and output and run the model. Model results should be analysed according to the problem. Eventually, a student has to prepare presentation following the standards of the scientific presentation, and present it on the seminar.
õppekirjandus
- Haltiner, G.J. and R.T. Williams, 1980. Numerical Prediction and Dynamic Meteorology. John Wiley and Sons.
- Kalnay, E., 2003. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press.
- Kantha, L. and C. Clayson, 2000. Numerical Models of Oceans and Oceanic Processes. Academic Press.
- NEMO ocean engine (G. Madec), Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619, 2008. (https://www.nemo-ocean.eu/wp-content/uploads/NEMO_book.pdf)
- Deaton, M.L. and J.J. Winebrake, 2000. Dynamic Modeling of Environmental Systems, Springer.
õppevormid ja mahud
päevaõpe: nädalatunnid
2.0
sessioonõppe töömahud (semestris):
loenguid
1.5
loenguid
-
praktikume
0.0
praktikume
-
harjutusi
0.5
harjutusi
-
vastutav õppejõud
Urmas Raudsepp, täisprofessor tenuuris (LM - meresüsteemide instituut)
ÕPPEJÕU AINEKAVA INFO
õppetöö semester
õpetav õppejõud / üksus
õppetöö keel
Laiendatud ainekava
2025/2026 sügis
Urmas Raudsepp, LM - meresüsteemide instituut
eesti keel
    kuva rohkem
    2024/2025 sügis
    Urmas Raudsepp, LM - meresüsteemide instituut
    eesti keel
      Ainekaart eesti keeles
      Ainekaart inglise keeles